Yuntong Ma, Zepeng Lv, Yining Zhang, Jinyang Peng, Yi Ge, Kai Wu, Yonghong Cheng
{"title":"通过同步测量分析油浸纸的空间电荷和电流特性","authors":"Yuntong Ma, Zepeng Lv, Yining Zhang, Jinyang Peng, Yi Ge, Kai Wu, Yonghong Cheng","doi":"10.1063/5.0215303","DOIUrl":null,"url":null,"abstract":"To study the current response to space charge in oil–paper insulation, a simultaneous space charge and external current measurement system are developed for a solid–liquid sample. The space charge and external current of oil-immersed paper are tested under different applied voltages. In the oil–paper sample, it accumulates heterocharge at 0.25 kV and homocharge at a higher voltage. The external currents first decrease and then increase with time. The changing timepoint decreases with the applied voltage. It shows that dynamic space charge evolution influences external current development. An unusual phenomenon is observed that the charge on both electrodes increases without heterocharge accumulation in a certain time range after voltage application, resulting in an increase in the average electric field. The transient electric field and displacement current at the cathode are calculated according to the amount of surface charge at the cathode. It indicates that displacement current takes up the main part of external current and decreases to zero when the surface charge amount stops increasing. After this stage, the conduction current is almost equal to the external current. The correlation between conduction current and electric field is analyzed. It reveals that when the electric field is lower than 5 kV/mm, the conduction current of oil–paper seems to be linear to the electric field strength, following Ohm’s law. When the electric field is higher than 5 kV/mm, the conduction current of oil–paper follows the Fowler–Nordheim law that the ln(jc/E2) is linear to 1/E. The transient external current has great potential in diagnosing electrical equipment.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of space charge and current characters of oil-immersed-paper with simultaneous measurement\",\"authors\":\"Yuntong Ma, Zepeng Lv, Yining Zhang, Jinyang Peng, Yi Ge, Kai Wu, Yonghong Cheng\",\"doi\":\"10.1063/5.0215303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the current response to space charge in oil–paper insulation, a simultaneous space charge and external current measurement system are developed for a solid–liquid sample. The space charge and external current of oil-immersed paper are tested under different applied voltages. In the oil–paper sample, it accumulates heterocharge at 0.25 kV and homocharge at a higher voltage. The external currents first decrease and then increase with time. The changing timepoint decreases with the applied voltage. It shows that dynamic space charge evolution influences external current development. An unusual phenomenon is observed that the charge on both electrodes increases without heterocharge accumulation in a certain time range after voltage application, resulting in an increase in the average electric field. The transient electric field and displacement current at the cathode are calculated according to the amount of surface charge at the cathode. It indicates that displacement current takes up the main part of external current and decreases to zero when the surface charge amount stops increasing. After this stage, the conduction current is almost equal to the external current. The correlation between conduction current and electric field is analyzed. It reveals that when the electric field is lower than 5 kV/mm, the conduction current of oil–paper seems to be linear to the electric field strength, following Ohm’s law. When the electric field is higher than 5 kV/mm, the conduction current of oil–paper follows the Fowler–Nordheim law that the ln(jc/E2) is linear to 1/E. The transient external current has great potential in diagnosing electrical equipment.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0215303\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0215303","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of space charge and current characters of oil-immersed-paper with simultaneous measurement
To study the current response to space charge in oil–paper insulation, a simultaneous space charge and external current measurement system are developed for a solid–liquid sample. The space charge and external current of oil-immersed paper are tested under different applied voltages. In the oil–paper sample, it accumulates heterocharge at 0.25 kV and homocharge at a higher voltage. The external currents first decrease and then increase with time. The changing timepoint decreases with the applied voltage. It shows that dynamic space charge evolution influences external current development. An unusual phenomenon is observed that the charge on both electrodes increases without heterocharge accumulation in a certain time range after voltage application, resulting in an increase in the average electric field. The transient electric field and displacement current at the cathode are calculated according to the amount of surface charge at the cathode. It indicates that displacement current takes up the main part of external current and decreases to zero when the surface charge amount stops increasing. After this stage, the conduction current is almost equal to the external current. The correlation between conduction current and electric field is analyzed. It reveals that when the electric field is lower than 5 kV/mm, the conduction current of oil–paper seems to be linear to the electric field strength, following Ohm’s law. When the electric field is higher than 5 kV/mm, the conduction current of oil–paper follows the Fowler–Nordheim law that the ln(jc/E2) is linear to 1/E. The transient external current has great potential in diagnosing electrical equipment.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.