介于正半定式和平方和之间的锥体

IF 0.5 4区 数学 Q3 MATHEMATICS
Charu Goel, Sarah Hess, Salma Kuhlmann
{"title":"介于正半定式和平方和之间的锥体","authors":"Charu Goel, Sarah Hess, Salma Kuhlmann","doi":"10.1515/advgeom-2024-0014","DOIUrl":null,"url":null,"abstract":"For <jats:italic>n</jats:italic>, <jats:italic>d</jats:italic> ∈ ℕ, the cone 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of positive semidefinite real forms in <jats:italic>n</jats:italic> + 1 variables of degree 2<jats:italic>d</jats:italic> contains the subcone <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of those representable as finite sums of squares of real forms. Hilbert [11] proved that these cones coincide exactly in the <jats:italic>Hilbert cases</jats:italic> (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) with <jats:italic>n</jats:italic> + 1 = 2 or 2<jats:italic>d</jats:italic> = 2 or (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) = (3, 4). In this paper, we induce a filtration of intermediate cones between <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> and 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> via the Gram matrix approach in [4] on a filtration of irreducible projective varieties <jats:italic>V</jats:italic> <jats:sub> <jats:italic>k</jats:italic>−<jats:italic>n</jats:italic> </jats:sub> ⊊ … ⊊ <jats:italic>V<jats:sub>n</jats:sub> </jats:italic> ⊊ … ⊊ <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> containing the Veronese variety. Here, <jats:italic>k</jats:italic> is the dimension of the vector space of real forms in <jats:italic>n</jats:italic> + 1 variables of degree <jats:italic>d</jats:italic>. By showing that <jats:italic>V</jats:italic> <jats:sub>0</jats:sub>, …, <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> (and <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1</jats:sub> when <jats:italic>n</jats:italic> = 2) are varieties of minimal degree, we demonstrate that the corresponding intermediate cones coincide with <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub>. We moreover prove that, in the non-Hilbert cases of (<jats:italic>n</jats:italic> + 1)-ary quartics for <jats:italic>n</jats:italic> ≥ 3 and (<jats:italic>n</jats:italic> + 1)-ary sextics for <jats:italic>n</jats:italic> ≥ 2, all the remaining cone inclusions are strict.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cones between the cones of positive semidefinite forms and sums of squares\",\"authors\":\"Charu Goel, Sarah Hess, Salma Kuhlmann\",\"doi\":\"10.1515/advgeom-2024-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For <jats:italic>n</jats:italic>, <jats:italic>d</jats:italic> ∈ ℕ, the cone 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of positive semidefinite real forms in <jats:italic>n</jats:italic> + 1 variables of degree 2<jats:italic>d</jats:italic> contains the subcone <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> of those representable as finite sums of squares of real forms. Hilbert [11] proved that these cones coincide exactly in the <jats:italic>Hilbert cases</jats:italic> (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) with <jats:italic>n</jats:italic> + 1 = 2 or 2<jats:italic>d</jats:italic> = 2 or (<jats:italic>n</jats:italic> + 1, 2<jats:italic>d</jats:italic>) = (3, 4). In this paper, we induce a filtration of intermediate cones between <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> and 𝓟<jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub> via the Gram matrix approach in [4] on a filtration of irreducible projective varieties <jats:italic>V</jats:italic> <jats:sub> <jats:italic>k</jats:italic>−<jats:italic>n</jats:italic> </jats:sub> ⊊ … ⊊ <jats:italic>V<jats:sub>n</jats:sub> </jats:italic> ⊊ … ⊊ <jats:italic>V</jats:italic> <jats:sub>0</jats:sub> containing the Veronese variety. Here, <jats:italic>k</jats:italic> is the dimension of the vector space of real forms in <jats:italic>n</jats:italic> + 1 variables of degree <jats:italic>d</jats:italic>. By showing that <jats:italic>V</jats:italic> <jats:sub>0</jats:sub>, …, <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> (and <jats:italic>V</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1</jats:sub> when <jats:italic>n</jats:italic> = 2) are varieties of minimal degree, we demonstrate that the corresponding intermediate cones coincide with <jats:italic>Σ</jats:italic> <jats:sub> <jats:italic>n</jats:italic>+1,2<jats:italic>d</jats:italic> </jats:sub>. We moreover prove that, in the non-Hilbert cases of (<jats:italic>n</jats:italic> + 1)-ary quartics for <jats:italic>n</jats:italic> ≥ 3 and (<jats:italic>n</jats:italic> + 1)-ary sextics for <jats:italic>n</jats:italic> ≥ 2, all the remaining cone inclusions are strict.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2024-0014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2024-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 n, d∈ ℕ,度数为 2d 的 n + 1 变数中正半定实数形式的锥𝓟 n+1,2d 包含可表示为实数形式有限平方和的子锥Σ n+1,2d 。希尔伯特[11] 证明了这些锥体在希尔伯特情形 (n + 1, 2d) 中完全重合,即 n + 1 = 2 或 2d = 2 或 (n + 1, 2d) = (3, 4)。在本文中,我们通过[4]中的格拉姆矩阵方法,在不可还原的投影变种 V k-n ⊊ ... ⊊ Vn ⊊ ... ⊊ V 0 的滤波上,诱导出介于 Σ n+1,2d 和 𝓟 n+1,2d 之间的中间锥的滤波,其中包含维罗纳变种。通过证明 V 0,...,V n(以及当 n = 2 时的 V n+1)是最小度的变项,我们证明了相应的中间锥与Σ n+1,2d 重合。此外,我们还证明,在 n ≥ 3 的 (n + 1)-ary 四元数和 n ≥ 2 的 (n + 1)-ary 六元数的非希尔伯特情况下,所有剩余的圆锥内含都是严格的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cones between the cones of positive semidefinite forms and sums of squares
For n, d ∈ ℕ, the cone 𝓟 n+1,2d of positive semidefinite real forms in n + 1 variables of degree 2d contains the subcone Σ n+1,2d of those representable as finite sums of squares of real forms. Hilbert [11] proved that these cones coincide exactly in the Hilbert cases (n + 1, 2d) with n + 1 = 2 or 2d = 2 or (n + 1, 2d) = (3, 4). In this paper, we induce a filtration of intermediate cones between Σ n+1,2d and 𝓟 n+1,2d via the Gram matrix approach in [4] on a filtration of irreducible projective varieties V kn ⊊ … ⊊ Vn ⊊ … ⊊ V 0 containing the Veronese variety. Here, k is the dimension of the vector space of real forms in n + 1 variables of degree d. By showing that V 0, …, V n (and V n+1 when n = 2) are varieties of minimal degree, we demonstrate that the corresponding intermediate cones coincide with Σ n+1,2d . We moreover prove that, in the non-Hilbert cases of (n + 1)-ary quartics for n ≥ 3 and (n + 1)-ary sextics for n ≥ 2, all the remaining cone inclusions are strict.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信