{"title":"神经量子嵌入:突破量子监督学习的极限","authors":"Tak Hur, Israel F. Araujo, Daniel K. Park","doi":"10.1103/physreva.110.022411","DOIUrl":null,"url":null,"abstract":"Quantum embedding is a fundamental prerequisite for applying quantum machine learning techniques to classical data and has substantial impacts on performance outcomes. In this study, we present neural quantum embedding (NQE), a method that efficiently optimizes quantum embedding beyond the limitations of positive and trace-preserving maps by leveraging classical deep-learning techniques. NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance. Moreover, NQE improves robustness against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices for image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96. In addition, numerical analyses highlight that NQE simultaneously improves the trainability and generalization performance of quantum neural networks, as well as of the quantum kernel method.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural quantum embedding: Pushing the limits of quantum supervised learning\",\"authors\":\"Tak Hur, Israel F. Araujo, Daniel K. Park\",\"doi\":\"10.1103/physreva.110.022411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum embedding is a fundamental prerequisite for applying quantum machine learning techniques to classical data and has substantial impacts on performance outcomes. In this study, we present neural quantum embedding (NQE), a method that efficiently optimizes quantum embedding beyond the limitations of positive and trace-preserving maps by leveraging classical deep-learning techniques. NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance. Moreover, NQE improves robustness against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices for image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96. In addition, numerical analyses highlight that NQE simultaneously improves the trainability and generalization performance of quantum neural networks, as well as of the quantum kernel method.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.022411\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022411","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Neural quantum embedding: Pushing the limits of quantum supervised learning
Quantum embedding is a fundamental prerequisite for applying quantum machine learning techniques to classical data and has substantial impacts on performance outcomes. In this study, we present neural quantum embedding (NQE), a method that efficiently optimizes quantum embedding beyond the limitations of positive and trace-preserving maps by leveraging classical deep-learning techniques. NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance. Moreover, NQE improves robustness against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices for image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96. In addition, numerical analyses highlight that NQE simultaneously improves the trainability and generalization performance of quantum neural networks, as well as of the quantum kernel method.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics