下载PDF
{"title":"密集电路图和循环的平面图兰数","authors":"Ruilin Shi, Zach Walsh, Xingxing Yu","doi":"10.1002/jgt.23165","DOIUrl":null,"url":null,"abstract":"<p>The <i>planar Turán number</i> <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of a graph <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> is the maximum number of edges in an <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>-vertex planar graph without <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> as a subgraph. Let <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> denote the cycle of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>. The planar Turán number <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is known for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mn>7</mn>\n </mrow></math>. We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> so that <span></span><math>\n \n <mrow>\n <msub>\n <mtext>ex</mtext>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>6</mn>\n \n <mo>−</mo>\n \n <mi>D</mi>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math> for all <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msup>\n <mi>k</mi>\n \n <mrow>\n <msub>\n <mi>log</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo> </mo>\n \n <mn>3</mn>\n </mrow>\n </msup>\n </mrow></math>. When <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>11</mn>\n </mrow></math> this bound is tight up to the constant <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"27-38"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23165","citationCount":"0","resultStr":"{\"title\":\"Dense circuit graphs and the planar Turán number of a cycle\",\"authors\":\"Ruilin Shi, Zach Walsh, Xingxing Yu\",\"doi\":\"10.1002/jgt.23165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>planar Turán number</i> <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mtext>ex</mtext>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> of a graph <span></span><math>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow></math> is the maximum number of edges in an <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math>-vertex planar graph without <span></span><math>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow></math> as a subgraph. Let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math> denote the cycle of length <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>. The planar Turán number <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mtext>ex</mtext>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is known for <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>7</mn>\\n </mrow></math>. We show that dense planar graphs with a certain connectivity property (known as circuit graphs) contain large near triangulations, and we use this result to obtain consequences for planar Turán numbers. In particular, we prove that there is a constant <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow></math> so that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mtext>ex</mtext>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>3</mn>\\n \\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <mn>6</mn>\\n \\n <mo>−</mo>\\n \\n <mi>D</mi>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mrow>\\n <msub>\\n <mi>log</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo> </mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow></math> for all <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <msup>\\n <mi>k</mi>\\n \\n <mrow>\\n <msub>\\n <mi>log</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo> </mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow></math>. When <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>11</mn>\\n </mrow></math> this bound is tight up to the constant <span></span><math>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow></math> and proves a conjecture of Cranston, Lidický, Liu, and Shantanam.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 1\",\"pages\":\"27-38\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23165\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23165","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用