稀疏-密集混合编码过程中的马约拉纳对象无耗散拓扑量子计算

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Ye-Min Zhan, Guan-Dong Mao, Yu-Ge Chen, Yue Yu, Xi Luo
{"title":"稀疏-密集混合编码过程中的马约拉纳对象无耗散拓扑量子计算","authors":"Ye-Min Zhan, Guan-Dong Mao, Yu-Ge Chen, Yue Yu, Xi Luo","doi":"10.1103/physreva.110.022609","DOIUrl":null,"url":null,"abstract":"Topological quantum computation based on Majorana objects is subject to a significant challenge because at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits. This dependency renders the quantum operations involving these gates probabilistic when attempting to advance quantum processes within the quantum circuit model. Such an approach leads to significant information loss whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we devise topological operations that allow for the nondissipative correction of information from undesired fermion parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as an example to explain how corrections can be implemented without affecting the quantum information carried by the computational qubits. This correction process can be applied to either the undesired input qubits or the fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edge-mode-based topological quantum computation.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipationless topological quantum computation for Majorana objects in the sparse-dense mixed encoding process\",\"authors\":\"Ye-Min Zhan, Guan-Dong Mao, Yu-Ge Chen, Yue Yu, Xi Luo\",\"doi\":\"10.1103/physreva.110.022609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological quantum computation based on Majorana objects is subject to a significant challenge because at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits. This dependency renders the quantum operations involving these gates probabilistic when attempting to advance quantum processes within the quantum circuit model. Such an approach leads to significant information loss whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we devise topological operations that allow for the nondissipative correction of information from undesired fermion parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as an example to explain how corrections can be implemented without affecting the quantum information carried by the computational qubits. This correction process can be applied to either the undesired input qubits or the fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edge-mode-based topological quantum computation.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.022609\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022609","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

基于马约拉纳对象的拓扑量子计算面临着重大挑战,因为至少有一些双量子比特量子门依赖于量子比特的费米子(电荷或自旋)奇偶性。当试图在量子电路模型中推进量子过程时,这种依赖性使得涉及这些门的量子操作具有概率性。每当测量产生不希望的费米子奇偶性时,这种方法就会导致大量信息丢失。为了解决信息浪费的问题,我们设计了拓扑操作,允许对信息进行无损校正,从非期望的费米子奇偶性转换为期望的费米子奇偶性。我们将以受控-NOT 门的稀疏-密集混合编码过程为例,解释如何在不影响计算量子比特所携带的量子信息的情况下实现修正。这个修正过程既可以应用于不需要的输入量子比特,也可以应用于依赖费米子奇偶性的量子门,而且它既适用于基于马约拉纳零模的拓扑量子计算,也适用于基于马约拉纳边模的拓扑量子计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dissipationless topological quantum computation for Majorana objects in the sparse-dense mixed encoding process

Dissipationless topological quantum computation for Majorana objects in the sparse-dense mixed encoding process
Topological quantum computation based on Majorana objects is subject to a significant challenge because at least some of the two-qubit quantum gates rely on the fermion (either charge or spin) parity of the qubits. This dependency renders the quantum operations involving these gates probabilistic when attempting to advance quantum processes within the quantum circuit model. Such an approach leads to significant information loss whenever measurements yield the undesired fermion parity. To resolve the problem of wasting information, we devise topological operations that allow for the nondissipative correction of information from undesired fermion parity to the desired one. We will use the sparse-dense mixed encoding process for the controlled-NOT gate as an example to explain how corrections can be implemented without affecting the quantum information carried by the computational qubits. This correction process can be applied to either the undesired input qubits or the fermion parity-dependent quantum gates, and it works for both Majorana-zero-mode-based and Majorana-edge-mode-based topological quantum computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信