{"title":"PA MXD6 的动态加热聚合研究:从热分析到高效聚合","authors":"","doi":"10.1016/j.tca.2024.179833","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing a practical polymerization strategy for poly(m-xylylene adipamide) (PA MXD6) requires regulating the high-temperature residence time and preventing the solidification of the reaction mixture. Dynamic heating strategies have shown promise in addressing this issue. However, conventional polycondensation kinetics are not optimal for characterizing nonisothermal processes due to continuous changes in the reactant state. This study employed thermal analysis as a continuous monitoring method to comprehensively investigate the effects of pressure, temperature, and diffusion on polymerization. The results indicate that high heating rates lead to faster reaction rates, as evidenced by the evolution of the kinetic parameters throughout the reaction process. Nevertheless, excessively high heating rates increase the solidification risk. To resolve this contradiction, a low-rate heating process with pressure was developed for efficient polymerization and scale-up, resulting in superior products. This study provides new insights into polyamide polymerization and offers practical guidelines for enhancing polymerization efficiency and process stability.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the dynamic heating polymerization of PA MXD6: From thermal analysis to efficient polymerization\",\"authors\":\"\",\"doi\":\"10.1016/j.tca.2024.179833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing a practical polymerization strategy for poly(m-xylylene adipamide) (PA MXD6) requires regulating the high-temperature residence time and preventing the solidification of the reaction mixture. Dynamic heating strategies have shown promise in addressing this issue. However, conventional polycondensation kinetics are not optimal for characterizing nonisothermal processes due to continuous changes in the reactant state. This study employed thermal analysis as a continuous monitoring method to comprehensively investigate the effects of pressure, temperature, and diffusion on polymerization. The results indicate that high heating rates lead to faster reaction rates, as evidenced by the evolution of the kinetic parameters throughout the reaction process. Nevertheless, excessively high heating rates increase the solidification risk. To resolve this contradiction, a low-rate heating process with pressure was developed for efficient polymerization and scale-up, resulting in superior products. This study provides new insights into polyamide polymerization and offers practical guidelines for enhancing polymerization efficiency and process stability.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040603124001722\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001722","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Study on the dynamic heating polymerization of PA MXD6: From thermal analysis to efficient polymerization
Optimizing a practical polymerization strategy for poly(m-xylylene adipamide) (PA MXD6) requires regulating the high-temperature residence time and preventing the solidification of the reaction mixture. Dynamic heating strategies have shown promise in addressing this issue. However, conventional polycondensation kinetics are not optimal for characterizing nonisothermal processes due to continuous changes in the reactant state. This study employed thermal analysis as a continuous monitoring method to comprehensively investigate the effects of pressure, temperature, and diffusion on polymerization. The results indicate that high heating rates lead to faster reaction rates, as evidenced by the evolution of the kinetic parameters throughout the reaction process. Nevertheless, excessively high heating rates increase the solidification risk. To resolve this contradiction, a low-rate heating process with pressure was developed for efficient polymerization and scale-up, resulting in superior products. This study provides new insights into polyamide polymerization and offers practical guidelines for enhancing polymerization efficiency and process stability.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes