Jia Chen , Christian Virrueta , Shengmin Zhang , Chuanbin Mao , Jianglin Wang
{"title":"4D 打印:3D 打印智能材料的焦点","authors":"Jia Chen , Christian Virrueta , Shengmin Zhang , Chuanbin Mao , Jianglin Wang","doi":"10.1016/j.mattod.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>4D printing combines the typical </span>3D printing<span> with “smart materials”, allowing 3D printed materials to undergo a structural change over time. Since its original concept was first introduced in 2013, 4D printing became an innovative research that has received more attention from scientists in different fields. This review summarizes the progress achieved in 4D printing technologies and their associated materials. First, the technology and process of 4D printing are overviewed, and then the structure and properties of smart materials utilized in 4D printing are analyzed in depth, including metamaterials<span>, shape memory materials, hydrogels, and self-healing polymers. We systematically illustrate the morphing mechanisms of the 4D printed smart materials, and then critically discuss the stimuli that can trigger transformation in the 4D printed smart materials, including heat, light, moisture, pH, electric current, and magnetic field. For 4D printed smart materials, all the changes programmed in the materials follow a mathematical model that allows scientists to predict and design the desired behaviors of the structures, using parameters such as the material distribution and the spatial gradients of the metric tensor. We finally conclude with the discussion of future challenges and opportunities for this ever-growing technology. Overall, 4D printing can create dynamic structures programmed to be responsive to external stimuli in the environment, widening its use in a myriad of applications such as rapid prototyping, electronics, biomedicine, soft robotics, self-assembly structures, smart sensors, and dynamic actuators.</span></span></p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"77 ","pages":"Pages 66-91"},"PeriodicalIF":21.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D printing: The spotlight for 3D printed smart materials\",\"authors\":\"Jia Chen , Christian Virrueta , Shengmin Zhang , Chuanbin Mao , Jianglin Wang\",\"doi\":\"10.1016/j.mattod.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>4D printing combines the typical </span>3D printing<span> with “smart materials”, allowing 3D printed materials to undergo a structural change over time. Since its original concept was first introduced in 2013, 4D printing became an innovative research that has received more attention from scientists in different fields. This review summarizes the progress achieved in 4D printing technologies and their associated materials. First, the technology and process of 4D printing are overviewed, and then the structure and properties of smart materials utilized in 4D printing are analyzed in depth, including metamaterials<span>, shape memory materials, hydrogels, and self-healing polymers. We systematically illustrate the morphing mechanisms of the 4D printed smart materials, and then critically discuss the stimuli that can trigger transformation in the 4D printed smart materials, including heat, light, moisture, pH, electric current, and magnetic field. For 4D printed smart materials, all the changes programmed in the materials follow a mathematical model that allows scientists to predict and design the desired behaviors of the structures, using parameters such as the material distribution and the spatial gradients of the metric tensor. We finally conclude with the discussion of future challenges and opportunities for this ever-growing technology. Overall, 4D printing can create dynamic structures programmed to be responsive to external stimuli in the environment, widening its use in a myriad of applications such as rapid prototyping, electronics, biomedicine, soft robotics, self-assembly structures, smart sensors, and dynamic actuators.</span></span></p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"77 \",\"pages\":\"Pages 66-91\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136970212400107X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136970212400107X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
4D printing: The spotlight for 3D printed smart materials
4D printing combines the typical 3D printing with “smart materials”, allowing 3D printed materials to undergo a structural change over time. Since its original concept was first introduced in 2013, 4D printing became an innovative research that has received more attention from scientists in different fields. This review summarizes the progress achieved in 4D printing technologies and their associated materials. First, the technology and process of 4D printing are overviewed, and then the structure and properties of smart materials utilized in 4D printing are analyzed in depth, including metamaterials, shape memory materials, hydrogels, and self-healing polymers. We systematically illustrate the morphing mechanisms of the 4D printed smart materials, and then critically discuss the stimuli that can trigger transformation in the 4D printed smart materials, including heat, light, moisture, pH, electric current, and magnetic field. For 4D printed smart materials, all the changes programmed in the materials follow a mathematical model that allows scientists to predict and design the desired behaviors of the structures, using parameters such as the material distribution and the spatial gradients of the metric tensor. We finally conclude with the discussion of future challenges and opportunities for this ever-growing technology. Overall, 4D printing can create dynamic structures programmed to be responsive to external stimuli in the environment, widening its use in a myriad of applications such as rapid prototyping, electronics, biomedicine, soft robotics, self-assembly structures, smart sensors, and dynamic actuators.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.