{0,1/2}封闭的原点分离与近似

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Lukas Brandl, Andreas S. Schulz
{"title":"{0,1/2}封闭的原点分离与近似","authors":"Lukas Brandl,&nbsp;Andreas S. Schulz","doi":"10.1016/j.orl.2024.107156","DOIUrl":null,"url":null,"abstract":"<div><p>The primal separation problem for <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-cuts is: Given a vertex <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> of the integer hull of a polytope <em>P</em> and some fractional point <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mi>P</mi></math></span>, does there exist a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-cut that is tight at <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and violated by <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>? We present two cases for which primal separation is solvable in polynomial time. Furthermore, we show that the optimization problem over the <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-closure can be solved in polynomial time up to a factor <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>, for any fixed <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107156"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167637724000920/pdfft?md5=98126ea14f7cd3986aac3e3d1d1e7424&pid=1-s2.0-S0167637724000920-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Primal separation and approximation for the {0,1/2}-closure\",\"authors\":\"Lukas Brandl,&nbsp;Andreas S. Schulz\",\"doi\":\"10.1016/j.orl.2024.107156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primal separation problem for <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-cuts is: Given a vertex <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> of the integer hull of a polytope <em>P</em> and some fractional point <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mi>P</mi></math></span>, does there exist a <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-cut that is tight at <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and violated by <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>? We present two cases for which primal separation is solvable in polynomial time. Furthermore, we show that the optimization problem over the <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></math></span>-closure can be solved in polynomial time up to a factor <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>, for any fixed <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"57 \",\"pages\":\"Article 107156\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000920/pdfft?md5=98126ea14f7cd3986aac3e3d1d1e7424&pid=1-s2.0-S0167637724000920-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000920\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000920","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

切分的基元分离问题是:给定多面体整数全角的一个顶点和某个小数点 ,是否存在一个-切口,该切口在多面体整数全角处是紧密的,并且在多面体整数全角处被违反? 我们提出了两种情况,对于这两种情况,基元分离可以在多项式时间内求解。此外,我们还证明了对于任何固定的 ,在多项式时间内可以求解 - 封闭上的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primal separation and approximation for the {0,1/2}-closure

The primal separation problem for {0,1/2}-cuts is: Given a vertex xˆ of the integer hull of a polytope P and some fractional point xP, does there exist a {0,1/2}-cut that is tight at xˆ and violated by x? We present two cases for which primal separation is solvable in polynomial time. Furthermore, we show that the optimization problem over the {0,1/2}-closure can be solved in polynomial time up to a factor (1+ε), for any fixed ε>0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信