{"title":"有界[公式省略]凸域上的卡列松量","authors":"Enchao Bi , Guicong Su , Shuo Zhang","doi":"10.1016/j.bulsci.2024.103492","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded <span><math><mi>C</mi></math></span>-convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on <span><math><mi>C</mi></math></span>-convex domains to be bounded on associated Bergman spaces.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"196 ","pages":"Article 103492"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carleson measures on bounded C-convex domains\",\"authors\":\"Enchao Bi , Guicong Su , Shuo Zhang\",\"doi\":\"10.1016/j.bulsci.2024.103492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded <span><math><mi>C</mi></math></span>-convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on <span><math><mi>C</mi></math></span>-convex domains to be bounded on associated Bergman spaces.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"196 \",\"pages\":\"Article 103492\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded -convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on -convex domains to be bounded on associated Bergman spaces.