有界[公式省略]凸域上的卡列松量

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Enchao Bi , Guicong Su , Shuo Zhang
{"title":"有界[公式省略]凸域上的卡列松量","authors":"Enchao Bi ,&nbsp;Guicong Su ,&nbsp;Shuo Zhang","doi":"10.1016/j.bulsci.2024.103492","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded <span><math><mi>C</mi></math></span>-convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on <span><math><mi>C</mi></math></span>-convex domains to be bounded on associated Bergman spaces.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"196 ","pages":"Article 103492"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carleson measures on bounded C-convex domains\",\"authors\":\"Enchao Bi ,&nbsp;Guicong Su ,&nbsp;Shuo Zhang\",\"doi\":\"10.1016/j.bulsci.2024.103492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded <span><math><mi>C</mi></math></span>-convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on <span><math><mi>C</mi></math></span>-convex domains to be bounded on associated Bergman spaces.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"196 \",\"pages\":\"Article 103492\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们从卡拉瑟奥多里(或小林)几何和伯格曼几何的角度,完整地描述了有界-凸域上的卡列松量和消失卡列松量的特征。作为推论,我们得到了-凸域上的组成算子在相关伯格曼空间上有界的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carleson measures on bounded C-convex domains

In this paper, we completely characterize the Carleson and the vanishing Carleson measures on bounded C-convex domains in terms of the Carathéodory (or the Kobayashi) geometry and Bergman geometry. As a corollary, we obtain a sufficient and necessary condition for the composition operators on C-convex domains to be bounded on associated Bergman spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信