Lifu Yang, Matthew Troemner, Gianluca Cusatis, Huaizhi Su
{"title":"颗粒材料粒度分布的新型分析模型","authors":"Lifu Yang, Matthew Troemner, Gianluca Cusatis, Huaizhi Su","doi":"10.1007/s00366-024-02042-7","DOIUrl":null,"url":null,"abstract":"<p>The analysis of particle size distributions is important to better understand the relation between the microstructure and the heterogenous physical behavior of granular materials, including soils, sands, and concrete. This paper presents a novel analytical model, entitled piecewise linear sieve curve, to accurately reproduce the complicated and wide-ranging particle size distribution of granular materials. The model assumes that the passing percentage varies linearly with aggregate size between two adjacent sieves. The probability density function and cumulative distribution function of the piecewise linear sieve curve can be determined directly once the experimental particle gradation is known. Several types of concrete with different mix designs were taken as numerical examples, and the particle modeling based on piecewise linear sieve curve and the classical Fuller curve were compared. The results show that the piecewise linear sieve curve provides a much better representation of different aggregate particle size distributions than the Fuller curve, and the proposed model achieves the goal to reproduce the experimental aggregate gradation in an efficient and accurate way.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"69 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel analytical model of particle size distributions in granular materials\",\"authors\":\"Lifu Yang, Matthew Troemner, Gianluca Cusatis, Huaizhi Su\",\"doi\":\"10.1007/s00366-024-02042-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of particle size distributions is important to better understand the relation between the microstructure and the heterogenous physical behavior of granular materials, including soils, sands, and concrete. This paper presents a novel analytical model, entitled piecewise linear sieve curve, to accurately reproduce the complicated and wide-ranging particle size distribution of granular materials. The model assumes that the passing percentage varies linearly with aggregate size between two adjacent sieves. The probability density function and cumulative distribution function of the piecewise linear sieve curve can be determined directly once the experimental particle gradation is known. Several types of concrete with different mix designs were taken as numerical examples, and the particle modeling based on piecewise linear sieve curve and the classical Fuller curve were compared. The results show that the piecewise linear sieve curve provides a much better representation of different aggregate particle size distributions than the Fuller curve, and the proposed model achieves the goal to reproduce the experimental aggregate gradation in an efficient and accurate way.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02042-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02042-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A novel analytical model of particle size distributions in granular materials
The analysis of particle size distributions is important to better understand the relation between the microstructure and the heterogenous physical behavior of granular materials, including soils, sands, and concrete. This paper presents a novel analytical model, entitled piecewise linear sieve curve, to accurately reproduce the complicated and wide-ranging particle size distribution of granular materials. The model assumes that the passing percentage varies linearly with aggregate size between two adjacent sieves. The probability density function and cumulative distribution function of the piecewise linear sieve curve can be determined directly once the experimental particle gradation is known. Several types of concrete with different mix designs were taken as numerical examples, and the particle modeling based on piecewise linear sieve curve and the classical Fuller curve were compared. The results show that the piecewise linear sieve curve provides a much better representation of different aggregate particle size distributions than the Fuller curve, and the proposed model achieves the goal to reproduce the experimental aggregate gradation in an efficient and accurate way.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.