{"title":"利用深度强化学习开发基于代理的流动分析网格生成器","authors":"Keunoh Lim, Kyungjae Lee, Sanga Lee, Kwanjung Yee","doi":"10.1007/s00366-024-02045-4","DOIUrl":null,"url":null,"abstract":"<p>Computational fluid dynamics (CFD) has widespread application in research and industry. The quality of the mesh, particularly in the boundary layer, significantly influences the CFD accuracy. Despite its importance, the mesh generation process remains manual and time intensive, with the introduction of potential errors and inconsistencies. The limitations of traditional methods have prompted the recent exploration of deep reinforcement learning (DRL) for mesh generation. Although some studies have demonstrated the applicability of DRL in mesh generation, they have limitations in utilizing existing tools, thereby falling short of fully leveraging the potential of DRL. This study proposes a new boundary mesh generation method using DRL, namely an agent-based mesh generator. The nodes on the surface act as agents and optimize the paths into space to create high-quality meshes. Mesh generation is naturally suited to DRL owing to its computational nature and deterministic execution. However, challenges also arise, including training numerous agents simultaneously and managing their interdependencies in a vast state space. In this study, these challenges are addressed along with an investigation of the optimal learning conditions after formulating grid generation as a DRL task: defining states, agents, actions, and rewards. The derived optimal conditions are applied to generate two dimensional airfoil grids to validate the feasibility of the proposed approach.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of agent-based mesh generator for flow analysis using deep reinforcement learning\",\"authors\":\"Keunoh Lim, Kyungjae Lee, Sanga Lee, Kwanjung Yee\",\"doi\":\"10.1007/s00366-024-02045-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computational fluid dynamics (CFD) has widespread application in research and industry. The quality of the mesh, particularly in the boundary layer, significantly influences the CFD accuracy. Despite its importance, the mesh generation process remains manual and time intensive, with the introduction of potential errors and inconsistencies. The limitations of traditional methods have prompted the recent exploration of deep reinforcement learning (DRL) for mesh generation. Although some studies have demonstrated the applicability of DRL in mesh generation, they have limitations in utilizing existing tools, thereby falling short of fully leveraging the potential of DRL. This study proposes a new boundary mesh generation method using DRL, namely an agent-based mesh generator. The nodes on the surface act as agents and optimize the paths into space to create high-quality meshes. Mesh generation is naturally suited to DRL owing to its computational nature and deterministic execution. However, challenges also arise, including training numerous agents simultaneously and managing their interdependencies in a vast state space. In this study, these challenges are addressed along with an investigation of the optimal learning conditions after formulating grid generation as a DRL task: defining states, agents, actions, and rewards. The derived optimal conditions are applied to generate two dimensional airfoil grids to validate the feasibility of the proposed approach.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02045-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02045-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Development of agent-based mesh generator for flow analysis using deep reinforcement learning
Computational fluid dynamics (CFD) has widespread application in research and industry. The quality of the mesh, particularly in the boundary layer, significantly influences the CFD accuracy. Despite its importance, the mesh generation process remains manual and time intensive, with the introduction of potential errors and inconsistencies. The limitations of traditional methods have prompted the recent exploration of deep reinforcement learning (DRL) for mesh generation. Although some studies have demonstrated the applicability of DRL in mesh generation, they have limitations in utilizing existing tools, thereby falling short of fully leveraging the potential of DRL. This study proposes a new boundary mesh generation method using DRL, namely an agent-based mesh generator. The nodes on the surface act as agents and optimize the paths into space to create high-quality meshes. Mesh generation is naturally suited to DRL owing to its computational nature and deterministic execution. However, challenges also arise, including training numerous agents simultaneously and managing their interdependencies in a vast state space. In this study, these challenges are addressed along with an investigation of the optimal learning conditions after formulating grid generation as a DRL task: defining states, agents, actions, and rewards. The derived optimal conditions are applied to generate two dimensional airfoil grids to validate the feasibility of the proposed approach.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.