Chung‐Yi Li, Hong‐Chi Hu, Yuan‐Ho Chen, Shinn‐Yn Lin
{"title":"用于固定宽度布斯乘法器的低延迟、高功效、基于行的二进制加权补偿器","authors":"Chung‐Yi Li, Hong‐Chi Hu, Yuan‐Ho Chen, Shinn‐Yn Lin","doi":"10.1002/cta.4207","DOIUrl":null,"url":null,"abstract":"Fixed‐width Booth multiplier (FWBM) plays a significant role in the arouse of approximate computing (AC) field. In this paper, a row‐based binary‐weighted compensator (RBC) for fixed‐width Booth multiplication is proposed. The derived binary‐weighted close‐form minimizes the conversion loss and hardware cost. With the proposed close‐form, the partial product array can be reduced dramatically. Consequently, the compact FWBM with the proposed RBC not only shortens the critical path to at least 24<jats:italic>%</jats:italic> but also minimizes the power dissipation to at least 44%. Moreover, the proposed RBC outperforms the state‐of‐art with a maximum merit improvement of 39%. By implementing the proposed RBC‐FWBM in the FIR filter, we manage to demonstrate the practicality of the proposed design with a significant reduction in power‐dissipation and delay while maintaining high accuracy.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"372 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low‐latency and power‐efficient row‐based binary‐weighted compensator for fixed‐width Booth multiplier\",\"authors\":\"Chung‐Yi Li, Hong‐Chi Hu, Yuan‐Ho Chen, Shinn‐Yn Lin\",\"doi\":\"10.1002/cta.4207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed‐width Booth multiplier (FWBM) plays a significant role in the arouse of approximate computing (AC) field. In this paper, a row‐based binary‐weighted compensator (RBC) for fixed‐width Booth multiplication is proposed. The derived binary‐weighted close‐form minimizes the conversion loss and hardware cost. With the proposed close‐form, the partial product array can be reduced dramatically. Consequently, the compact FWBM with the proposed RBC not only shortens the critical path to at least 24<jats:italic>%</jats:italic> but also minimizes the power dissipation to at least 44%. Moreover, the proposed RBC outperforms the state‐of‐art with a maximum merit improvement of 39%. By implementing the proposed RBC‐FWBM in the FIR filter, we manage to demonstrate the practicality of the proposed design with a significant reduction in power‐dissipation and delay while maintaining high accuracy.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":\"372 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4207\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4207","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low‐latency and power‐efficient row‐based binary‐weighted compensator for fixed‐width Booth multiplier
Fixed‐width Booth multiplier (FWBM) plays a significant role in the arouse of approximate computing (AC) field. In this paper, a row‐based binary‐weighted compensator (RBC) for fixed‐width Booth multiplication is proposed. The derived binary‐weighted close‐form minimizes the conversion loss and hardware cost. With the proposed close‐form, the partial product array can be reduced dramatically. Consequently, the compact FWBM with the proposed RBC not only shortens the critical path to at least 24% but also minimizes the power dissipation to at least 44%. Moreover, the proposed RBC outperforms the state‐of‐art with a maximum merit improvement of 39%. By implementing the proposed RBC‐FWBM in the FIR filter, we manage to demonstrate the practicality of the proposed design with a significant reduction in power‐dissipation and delay while maintaining high accuracy.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.