学习移动无线网络的自适应转发策略:资源使用与延迟

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Victoria Manfredi, Alicia P. Wolfe, Xiaolan Zhang, Bing Wang
{"title":"学习移动无线网络的自适应转发策略:资源使用与延迟","authors":"Victoria Manfredi, Alicia P. Wolfe, Xiaolan Zhang, Bing Wang","doi":"10.1007/s10994-024-06601-3","DOIUrl":null,"url":null,"abstract":"<p>Mobile wireless networks present several challenges for any learning system, due to uncertain and variable device movement, a decentralized network architecture, and constraints on network resources. In this work, we use deep reinforcement learning (DRL) to learn a scalable and generalizable forwarding strategy for such networks. We make the following contributions: (i) we use hierarchical RL to design DRL packet agents rather than device agents to capture the packet forwarding decisions that are made over time and improve training efficiency; (ii) we use relational features to ensure generalizability of the learned forwarding strategy to a wide range of network dynamics and enable offline training; and (iii) we incorporate both forwarding goals and network resource considerations into packet decision-making by designing a weighted reward function. Our results show that the forwarding strategy used by our DRL packet agent often achieves a similar delay per packet delivered as the oracle forwarding strategy and almost always outperforms all other strategies (including state-of-the-art strategies) in terms of delay, even on scenarios on which the DRL agent was not trained.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning an adaptive forwarding strategy for mobile wireless networks: resource usage vs. latency\",\"authors\":\"Victoria Manfredi, Alicia P. Wolfe, Xiaolan Zhang, Bing Wang\",\"doi\":\"10.1007/s10994-024-06601-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mobile wireless networks present several challenges for any learning system, due to uncertain and variable device movement, a decentralized network architecture, and constraints on network resources. In this work, we use deep reinforcement learning (DRL) to learn a scalable and generalizable forwarding strategy for such networks. We make the following contributions: (i) we use hierarchical RL to design DRL packet agents rather than device agents to capture the packet forwarding decisions that are made over time and improve training efficiency; (ii) we use relational features to ensure generalizability of the learned forwarding strategy to a wide range of network dynamics and enable offline training; and (iii) we incorporate both forwarding goals and network resource considerations into packet decision-making by designing a weighted reward function. Our results show that the forwarding strategy used by our DRL packet agent often achieves a similar delay per packet delivered as the oracle forwarding strategy and almost always outperforms all other strategies (including state-of-the-art strategies) in terms of delay, even on scenarios on which the DRL agent was not trained.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06601-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06601-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于设备移动的不确定性和可变性、分散的网络架构以及网络资源的限制,移动无线网络给任何学习系统都带来了挑战。在这项工作中,我们使用深度强化学习(DRL)为此类网络学习可扩展、可通用的转发策略。我们的贡献如下:(i) 我们使用分层强化学习来设计 DRL 数据包代理,而不是设备代理,以捕捉随着时间推移而做出的数据包转发决策,并提高训练效率;(ii) 我们使用关系特征来确保学习到的转发策略对各种网络动态具有普适性,并实现离线训练;(iii) 我们通过设计加权奖励函数,将转发目标和网络资源考虑因素纳入数据包决策。我们的研究结果表明,我们的 DRL 数据包代理所使用的转发策略通常能实现与 Oracle 转发策略相似的每个数据包传输延迟,而且在延迟方面几乎总是优于所有其他策略(包括最先进的策略),即使在 DRL 代理未接受过训练的场景中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning an adaptive forwarding strategy for mobile wireless networks: resource usage vs. latency

Learning an adaptive forwarding strategy for mobile wireless networks: resource usage vs. latency

Mobile wireless networks present several challenges for any learning system, due to uncertain and variable device movement, a decentralized network architecture, and constraints on network resources. In this work, we use deep reinforcement learning (DRL) to learn a scalable and generalizable forwarding strategy for such networks. We make the following contributions: (i) we use hierarchical RL to design DRL packet agents rather than device agents to capture the packet forwarding decisions that are made over time and improve training efficiency; (ii) we use relational features to ensure generalizability of the learned forwarding strategy to a wide range of network dynamics and enable offline training; and (iii) we incorporate both forwarding goals and network resource considerations into packet decision-making by designing a weighted reward function. Our results show that the forwarding strategy used by our DRL packet agent often achieves a similar delay per packet delivered as the oracle forwarding strategy and almost always outperforms all other strategies (including state-of-the-art strategies) in terms of delay, even on scenarios on which the DRL agent was not trained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信