{"title":"椭圆调和数列重温","authors":"J.-P. Allouche, Y. Hu, C. Morin","doi":"10.1007/s10474-024-01448-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ellipsephic or Kempner-like harmonic series are series of inverses of integers whose expansion in base <i>B</i>, for some <span>\\(B \\geq 2\\)</span>, contains no occurrence of some fixed digit or some fixed block of digits. A prototypical example was proposed by Kempner in 1914, namely the sum inverses of integers whose expansion in base 10 contains no occurrence of a nonzero given digit. Results about such series address their convergence as well as closed expressions for their sums (or approximations thereof). \nAnother direction of research is the study of sums of inverses of integers that contain only a given finite number, say <i>k</i>, of some digit or some block of digits, and the limits of such sums when <i>k</i> goes to infinity. \nGeneralizing partial results in the literature, we give a complete result for any digit or block of digits in any base. \n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ellipsephic harmonic series revisited\",\"authors\":\"J.-P. Allouche, Y. Hu, C. Morin\",\"doi\":\"10.1007/s10474-024-01448-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ellipsephic or Kempner-like harmonic series are series of inverses of integers whose expansion in base <i>B</i>, for some <span>\\\\(B \\\\geq 2\\\\)</span>, contains no occurrence of some fixed digit or some fixed block of digits. A prototypical example was proposed by Kempner in 1914, namely the sum inverses of integers whose expansion in base 10 contains no occurrence of a nonzero given digit. Results about such series address their convergence as well as closed expressions for their sums (or approximations thereof). \\nAnother direction of research is the study of sums of inverses of integers that contain only a given finite number, say <i>k</i>, of some digit or some block of digits, and the limits of such sums when <i>k</i> goes to infinity. \\nGeneralizing partial results in the literature, we give a complete result for any digit or block of digits in any base. \\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01448-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01448-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
椭圆级数或类似坎普纳的调和级数是整数的倒数级数,对于某些 \(B \geq 2\), 这些整数在基数 B 中的展开不包含某些固定的数字或固定的数字块。肯普纳(Kempner)在 1914 年提出了一个典型的例子,即在基数 10 中展开不包含非零给定数字的整数倒数之和。有关这类数列的结果涉及它们的收敛性以及它们的和(或其近似值)的封闭表达式。另一个研究方向是研究只包含给定有限个数(例如 k)的某些数字或某些数字块的整数的倒数之和,以及当 k 变为无穷大时这些和的极限。在推广文献中的部分结果的基础上,我们给出了一个适用于任何基数中的任何数位或数位组的完整结果。
Ellipsephic or Kempner-like harmonic series are series of inverses of integers whose expansion in base B, for some \(B \geq 2\), contains no occurrence of some fixed digit or some fixed block of digits. A prototypical example was proposed by Kempner in 1914, namely the sum inverses of integers whose expansion in base 10 contains no occurrence of a nonzero given digit. Results about such series address their convergence as well as closed expressions for their sums (or approximations thereof).
Another direction of research is the study of sums of inverses of integers that contain only a given finite number, say k, of some digit or some block of digits, and the limits of such sums when k goes to infinity.
Generalizing partial results in the literature, we give a complete result for any digit or block of digits in any base.