{"title":"具有旋转和振动非平衡的双原子气体的自适应统一气体动力学方案","authors":"Yufeng Wei , Wenpei Long , Kun Xu","doi":"10.1016/j.cpc.2024.109324","DOIUrl":null,"url":null,"abstract":"<div><p>Multiscale nonequilibrium physics at large variations of local Knudsen number are encountered in applications of aerospace engineering and micro-electro-mechanical systems, such as high-speed flying vehicles and low pressure of the encapsulation. An accurate description of flow physics in all flow regimes within a single computation requires a genuinely multiscale method. The adaptive unified gas-kinetic scheme (AUGKS) is developed for such multiscale flow simulation. The AUGKS applies discretized velocity space to accurately capture the non-equilibrium physics in the multiscale UGKS, and adaptively employs continuous distribution functions following Chapman–Enskog expansion to efficiently recover near-equilibrium flow region in GKS. The UGKS and GKS are dynamically connected at the cell interface through the fluxes from the discretized and continuous gas distribution functions, which avoids any buffer zone between them. In this study, the AUGKS with rotation and vibration non-equilibrium is developed based on a multiple temperature relaxation model. The real gas effect in different flow regimes has been properly captured. To capture aerodynamic heating accurately, the heat flux modifications from the rotation and vibration modes are also included in the current scheme. Unstructured discrete particle velocity space is adopted to further improve the computational performance of the AUGKS. Numerical tests, including Sod tube, normal shock structure, high-speed flow around the two-dimensional cylinder and three-dimensional sphere and space vehicles, and an unsteady nozzle plume flow from the continuum flow to the background vacuum, have been conducted to validate the current scheme. In comparison with the original UGKS, the current scheme speeds up the computation, reduces the memory requirement, and maintains the equivalent accuracy for multiscale flow simulation, which provides an effective tool for nonequilibrium flow simulations, especially for the flows at low and medium speed.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive unified gas-kinetic scheme for diatomic gases with rotational and vibrational nonequilibrium\",\"authors\":\"Yufeng Wei , Wenpei Long , Kun Xu\",\"doi\":\"10.1016/j.cpc.2024.109324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiscale nonequilibrium physics at large variations of local Knudsen number are encountered in applications of aerospace engineering and micro-electro-mechanical systems, such as high-speed flying vehicles and low pressure of the encapsulation. An accurate description of flow physics in all flow regimes within a single computation requires a genuinely multiscale method. The adaptive unified gas-kinetic scheme (AUGKS) is developed for such multiscale flow simulation. The AUGKS applies discretized velocity space to accurately capture the non-equilibrium physics in the multiscale UGKS, and adaptively employs continuous distribution functions following Chapman–Enskog expansion to efficiently recover near-equilibrium flow region in GKS. The UGKS and GKS are dynamically connected at the cell interface through the fluxes from the discretized and continuous gas distribution functions, which avoids any buffer zone between them. In this study, the AUGKS with rotation and vibration non-equilibrium is developed based on a multiple temperature relaxation model. The real gas effect in different flow regimes has been properly captured. To capture aerodynamic heating accurately, the heat flux modifications from the rotation and vibration modes are also included in the current scheme. Unstructured discrete particle velocity space is adopted to further improve the computational performance of the AUGKS. Numerical tests, including Sod tube, normal shock structure, high-speed flow around the two-dimensional cylinder and three-dimensional sphere and space vehicles, and an unsteady nozzle plume flow from the continuum flow to the background vacuum, have been conducted to validate the current scheme. In comparison with the original UGKS, the current scheme speeds up the computation, reduces the memory requirement, and maintains the equivalent accuracy for multiscale flow simulation, which provides an effective tool for nonequilibrium flow simulations, especially for the flows at low and medium speed.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002479\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002479","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Adaptive unified gas-kinetic scheme for diatomic gases with rotational and vibrational nonequilibrium
Multiscale nonequilibrium physics at large variations of local Knudsen number are encountered in applications of aerospace engineering and micro-electro-mechanical systems, such as high-speed flying vehicles and low pressure of the encapsulation. An accurate description of flow physics in all flow regimes within a single computation requires a genuinely multiscale method. The adaptive unified gas-kinetic scheme (AUGKS) is developed for such multiscale flow simulation. The AUGKS applies discretized velocity space to accurately capture the non-equilibrium physics in the multiscale UGKS, and adaptively employs continuous distribution functions following Chapman–Enskog expansion to efficiently recover near-equilibrium flow region in GKS. The UGKS and GKS are dynamically connected at the cell interface through the fluxes from the discretized and continuous gas distribution functions, which avoids any buffer zone between them. In this study, the AUGKS with rotation and vibration non-equilibrium is developed based on a multiple temperature relaxation model. The real gas effect in different flow regimes has been properly captured. To capture aerodynamic heating accurately, the heat flux modifications from the rotation and vibration modes are also included in the current scheme. Unstructured discrete particle velocity space is adopted to further improve the computational performance of the AUGKS. Numerical tests, including Sod tube, normal shock structure, high-speed flow around the two-dimensional cylinder and three-dimensional sphere and space vehicles, and an unsteady nozzle plume flow from the continuum flow to the background vacuum, have been conducted to validate the current scheme. In comparison with the original UGKS, the current scheme speeds up the computation, reduces the memory requirement, and maintains the equivalent accuracy for multiscale flow simulation, which provides an effective tool for nonequilibrium flow simulations, especially for the flows at low and medium speed.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.