KelbgLIP:高温 Kelbg 密度矩阵的程序实现,用于具有长程库仑相互作用的路径积分和分子动力学模拟

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
G.S. Demyanov, P.R. Levashov
{"title":"KelbgLIP:高温 Kelbg 密度矩阵的程序实现,用于具有长程库仑相互作用的路径积分和分子动力学模拟","authors":"G.S. Demyanov,&nbsp;P.R. Levashov","doi":"10.1016/j.cpc.2024.109326","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present the <span>KelbgLIP</span> code to implement the previously obtained analytical density matrix that includes Coulomb long-range interactions. The method is based on the work of G. Kelbg, who derived a high temperature density matrix for the Coulomb potential. To include all long-range interactions in the density matrix, we use the Ewald technique, specifically the angular-averaged Ewald potential (AAEP). The solution of the Blöch equation within the AAEP has a direct analytic form that can be easily implemented in classical and quantum Monte Carlo or molecular dynamics codes, including exchange effects. The potential part of the density matrix remains finite at small distances, preventing the collapse of a two-component system. Using <span>KelbgLIP</span>, one can calculate the diagonal Kelbg-AAE pseudopotential and the pair density matrix. In the case of a hydrogen plasma, the code is able to calculate action, kinetic and potential energy in the path integral representation. We validated our approach by simulating a nondegenerate weakly coupled hydrogen plasma and obtained the thermodynamic limit in agreement with the Debye-Hückel approximation. In addition, we observe the agreement with classical simulations using the unbounded from below AAEP, which is possible in the weakly-coupled regime.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KelbgLIP: Program implementation of the high-temperature Kelbg density matrix for path integral and molecular dynamics simulations with long-range Coulomb interaction\",\"authors\":\"G.S. Demyanov,&nbsp;P.R. Levashov\",\"doi\":\"10.1016/j.cpc.2024.109326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present the <span>KelbgLIP</span> code to implement the previously obtained analytical density matrix that includes Coulomb long-range interactions. The method is based on the work of G. Kelbg, who derived a high temperature density matrix for the Coulomb potential. To include all long-range interactions in the density matrix, we use the Ewald technique, specifically the angular-averaged Ewald potential (AAEP). The solution of the Blöch equation within the AAEP has a direct analytic form that can be easily implemented in classical and quantum Monte Carlo or molecular dynamics codes, including exchange effects. The potential part of the density matrix remains finite at small distances, preventing the collapse of a two-component system. Using <span>KelbgLIP</span>, one can calculate the diagonal Kelbg-AAE pseudopotential and the pair density matrix. In the case of a hydrogen plasma, the code is able to calculate action, kinetic and potential energy in the path integral representation. We validated our approach by simulating a nondegenerate weakly coupled hydrogen plasma and obtained the thermodynamic limit in agreement with the Debye-Hückel approximation. In addition, we observe the agreement with classical simulations using the unbounded from below AAEP, which is possible in the weakly-coupled regime.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002492\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002492","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了实现先前获得的包含库仑长程相互作用的分析密度矩阵的代码。该方法基于 G. Kelbg 的研究成果,他推导出了库仑势的高温密度矩阵。为了在密度矩阵中包含所有长程相互作用,我们使用了埃瓦尔德技术,特别是角平均埃瓦尔德势(AAEP)。布洛赫方程在 AAEP 中的求解具有直接的解析形式,可以很容易地在经典和量子蒙特卡罗或分子动力学代码中实现,包括交换效应。密度矩阵的电势部分在小距离时保持有限,从而防止了双组分系统的坍缩。利用 ,可以计算对角 Kelbg-AAE 伪势和对密度矩阵。在氢等离子体的情况下,代码能够以路径积分的形式计算作用能、动能和势能。我们通过模拟非enerate 弱耦合氢等离子体验证了我们的方法,并获得了与 Debye-Hückel 近似一致的热力学极限。此外,我们还观察到与使用自下而上无约束 AAEP 的经典模拟结果一致,这在弱耦合体系中是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KelbgLIP: Program implementation of the high-temperature Kelbg density matrix for path integral and molecular dynamics simulations with long-range Coulomb interaction

In this paper, we present the KelbgLIP code to implement the previously obtained analytical density matrix that includes Coulomb long-range interactions. The method is based on the work of G. Kelbg, who derived a high temperature density matrix for the Coulomb potential. To include all long-range interactions in the density matrix, we use the Ewald technique, specifically the angular-averaged Ewald potential (AAEP). The solution of the Blöch equation within the AAEP has a direct analytic form that can be easily implemented in classical and quantum Monte Carlo or molecular dynamics codes, including exchange effects. The potential part of the density matrix remains finite at small distances, preventing the collapse of a two-component system. Using KelbgLIP, one can calculate the diagonal Kelbg-AAE pseudopotential and the pair density matrix. In the case of a hydrogen plasma, the code is able to calculate action, kinetic and potential energy in the path integral representation. We validated our approach by simulating a nondegenerate weakly coupled hydrogen plasma and obtained the thermodynamic limit in agreement with the Debye-Hückel approximation. In addition, we observe the agreement with classical simulations using the unbounded from below AAEP, which is possible in the weakly-coupled regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信