{"title":"通过 N-磺酰基酮亚胺化学合成含有磺酰基支架的多取代吡咯衍生物的新途径","authors":"Manijeh Nematpour","doi":"10.1080/17415993.2024.2388727","DOIUrl":null,"url":null,"abstract":"<div><p>A rapid practical new synthesis of multi-substituted pyrrole derivatives with high yields through a novel four-component reaction of sulfonyl azides, terminal alkynes, nitro compounds, and trichloroacetonitril is a remarkable achievement in organic chemistry. This strategy offers a direct and efficient route to access complex molecular structures from readily available starting materials. To expand the work, the reaction of the final product with sulfinate salt under simple conditions and room temperature, poly-substituted pyrroles with sulfone functional group are formed. The combination of available starting materials, catalytic systems, mild reaction conditions, and ease of purification procedures contributes to the attractiveness of this method for the synthesis of diverse multi-substituted pyrrole derivatives.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":"45 5","pages":"Pages 678-689"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new route for the synthesis of multi-substituted pyrrole derivatives containing a sulfonyl scaffold via the chemistry of N-sulfonylketenimine\",\"authors\":\"Manijeh Nematpour\",\"doi\":\"10.1080/17415993.2024.2388727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A rapid practical new synthesis of multi-substituted pyrrole derivatives with high yields through a novel four-component reaction of sulfonyl azides, terminal alkynes, nitro compounds, and trichloroacetonitril is a remarkable achievement in organic chemistry. This strategy offers a direct and efficient route to access complex molecular structures from readily available starting materials. To expand the work, the reaction of the final product with sulfinate salt under simple conditions and room temperature, poly-substituted pyrroles with sulfone functional group are formed. The combination of available starting materials, catalytic systems, mild reaction conditions, and ease of purification procedures contributes to the attractiveness of this method for the synthesis of diverse multi-substituted pyrrole derivatives.</p></div>\",\"PeriodicalId\":17081,\"journal\":{\"name\":\"Journal of Sulfur Chemistry\",\"volume\":\"45 5\",\"pages\":\"Pages 678-689\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sulfur Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1741599324000266\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599324000266","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A new route for the synthesis of multi-substituted pyrrole derivatives containing a sulfonyl scaffold via the chemistry of N-sulfonylketenimine
A rapid practical new synthesis of multi-substituted pyrrole derivatives with high yields through a novel four-component reaction of sulfonyl azides, terminal alkynes, nitro compounds, and trichloroacetonitril is a remarkable achievement in organic chemistry. This strategy offers a direct and efficient route to access complex molecular structures from readily available starting materials. To expand the work, the reaction of the final product with sulfinate salt under simple conditions and room temperature, poly-substituted pyrroles with sulfone functional group are formed. The combination of available starting materials, catalytic systems, mild reaction conditions, and ease of purification procedures contributes to the attractiveness of this method for the synthesis of diverse multi-substituted pyrrole derivatives.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.