一种优化的量子粒子群优化扩展卡尔曼滤波算法,用于不同温度条件下高容量锂离子电池的在线电荷状态估计

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-08-06 DOI:10.1007/s11581-024-05749-1
Wenjie Wu, Shunli Wang, Donglei Liu, Yongcun Fan, Daijiang Mo, Carlos Fernandez
{"title":"一种优化的量子粒子群优化扩展卡尔曼滤波算法,用于不同温度条件下高容量锂离子电池的在线电荷状态估计","authors":"Wenjie Wu,&nbsp;Shunli Wang,&nbsp;Donglei Liu,&nbsp;Yongcun Fan,&nbsp;Daijiang Mo,&nbsp;Carlos Fernandez","doi":"10.1007/s11581-024-05749-1","DOIUrl":null,"url":null,"abstract":"<div><p>The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized quantum particle swarm optimization–extended Kalman filter algorithm for the online state of charge estimation of high-capacity lithium-ion batteries under varying temperature conditions\",\"authors\":\"Wenjie Wu,&nbsp;Shunli Wang,&nbsp;Donglei Liu,&nbsp;Yongcun Fan,&nbsp;Daijiang Mo,&nbsp;Carlos Fernandez\",\"doi\":\"10.1007/s11581-024-05749-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05749-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05749-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电池管理系统(BMS)的核心重点是准确估计锂离子电池的充电状态(SOC)。为解决扩展卡尔曼滤波算法(EKF)中噪声协方差矩阵选择不当,进而影响电动汽车实际运行效果和续航里程的问题,本文提出了自适应正余弦-列维飞行-量子粒子群优化(ASL-QPSO)算法,以寻找最优噪声协方差矩阵。首先,本文提出了可变遗忘因子递归最小二乘法(VFFRLS)算法来确定动力锂离子电池等效电路模型的参数。然后,利用 EKF 算法在线传输所获得的参数,在此基础上利用 ASL-QPSO 更新局部吸引因子,从而选择合适的噪声协方差矩阵。最后,得到优化后的噪声协方差矩阵,用于实现对动力锂离子电池 SOC 的精确估算。不同工作条件和温度下的实验结果表明,该算法的最大绝对误差(MAX)、平均绝对误差(MAE)和均方根误差(RMSE)分别小于 1.82%、0.59% 和 0.72%。这表明该算法具有卓越的收敛调整能力和较高的鲁棒性,为锂离子电池的 SOC 估算提供了一种新颖的优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An optimized quantum particle swarm optimization–extended Kalman filter algorithm for the online state of charge estimation of high-capacity lithium-ion batteries under varying temperature conditions

An optimized quantum particle swarm optimization–extended Kalman filter algorithm for the online state of charge estimation of high-capacity lithium-ion batteries under varying temperature conditions

The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信