{"title":"一种优化的量子粒子群优化扩展卡尔曼滤波算法,用于不同温度条件下高容量锂离子电池的在线电荷状态估计","authors":"Wenjie Wu, Shunli Wang, Donglei Liu, Yongcun Fan, Daijiang Mo, Carlos Fernandez","doi":"10.1007/s11581-024-05749-1","DOIUrl":null,"url":null,"abstract":"<div><p>The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized quantum particle swarm optimization–extended Kalman filter algorithm for the online state of charge estimation of high-capacity lithium-ion batteries under varying temperature conditions\",\"authors\":\"Wenjie Wu, Shunli Wang, Donglei Liu, Yongcun Fan, Daijiang Mo, Carlos Fernandez\",\"doi\":\"10.1007/s11581-024-05749-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05749-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05749-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An optimized quantum particle swarm optimization–extended Kalman filter algorithm for the online state of charge estimation of high-capacity lithium-ion batteries under varying temperature conditions
The core focus of the battery management system (BMS) is accurate state of charge (SOC) estimation of the lithium-ion batteries. To solve the problem of improper selection of the noise covariance matrix in the extended Kalman filter (EKF) algorithm, which in turn affects the actual operating effect and range of electric vehicles, this paper proposes the adaptive sine cosine–Levy flight–quantum particle swarm optimization (ASL-QPSO) algorithm to find the optimal noise covariance matrix. Firstly, this paper proposes the variable forgetting factor recursive least square (VFFRLS) algorithm to identify the parameters of the equivalent circuit model of the power lithium-ion batteries. Then, the obtained parameters are transmitted online by the EKF algorithm, based on which the local attraction factor is updated using the ASL-QPSO, which is used to select the appropriate noise covariance matrix. Finally, the optimized noise covariance matrix is obtained and used to achieve the accurate SOC estimation of the power lithium-ion batteries. Experimental results under different operating conditions and temperatures show that the maximum absolute error (MAX), mean absolute error (MAE), and root mean square error (RMSE) of the algorithm are less than 1.82%, 0.59%, and 0.72%, respectively. This demonstrates that the algorithm has superior convergence tuning and high robustness, presenting a novel optimization strategy for the SOC estimation of lithium-ion batteries.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.