通过过滤强化学习实现不确定性条件下无人机的分散、安全、多代理运动规划

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano
{"title":"通过过滤强化学习实现不确定性条件下无人机的分散、安全、多代理运动规划","authors":"Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano","doi":"10.1109/TCST.2024.3433229","DOIUrl":null,"url":null,"abstract":"We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2492-2499"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning\",\"authors\":\"Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano\",\"doi\":\"10.1109/TCST.2024.3433229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 6\",\"pages\":\"2492-2499\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10627971/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10627971/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种分散式多代理运动规划器,它能保证团队在代理模型和环境随机不确定性条件下的概率安全。我们的可扩展方法使用现成的单个代理强化学习(RL)实时生成安全的运动计划,并通过分布稳健的凸优化和缓冲 Voronoi 单元实现安全。我们保证了平均轨迹的递归可行性,并利用安全的时间折扣减轻了保守性。我们在模拟中表明,与现有方法相比,我们的方法能生成安全且性能高的轨迹,并在使用无人机进行的物理实验中进一步验证了这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning
We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信