超临界水系统中污染降解和资源化的 ReaxFF 分子动力学研究

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
{"title":"超临界水系统中污染降解和资源化的 ReaxFF 分子动力学研究","authors":"","doi":"10.1016/j.cep.2024.109933","DOIUrl":null,"url":null,"abstract":"<div><p>ReaxFF method has both reasonable accuracy and competitive computational efficiency, which is conducive to simulating complex reaction processes. Considering that supercritical water technology is effective in pollution degradation and resourcization, we have introduced ReaxFF method to pollutants treatment with SCW technology to identify the reaction mechanism, which makes up for the difficulty in experimental measurement under complex supercritical conditions. Based on this, significant efforts have been made to identify the reaction mechanism and dynamic process in various wastewater degradation and coal gasification. Supercritical water, coupled with added oxidants and catalysts play a vital role in promoting pollutant degradation and fuel gas production. The challenges for the development of theoretical methods and the revelation of accurate mechanisms are proposed, aiming to provide scientific support for optimizing the reaction process and reactor design.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReaxFF molecular dynamics for pollution degradation and resourcization in the supercritical water system\",\"authors\":\"\",\"doi\":\"10.1016/j.cep.2024.109933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ReaxFF method has both reasonable accuracy and competitive computational efficiency, which is conducive to simulating complex reaction processes. Considering that supercritical water technology is effective in pollution degradation and resourcization, we have introduced ReaxFF method to pollutants treatment with SCW technology to identify the reaction mechanism, which makes up for the difficulty in experimental measurement under complex supercritical conditions. Based on this, significant efforts have been made to identify the reaction mechanism and dynamic process in various wastewater degradation and coal gasification. Supercritical water, coupled with added oxidants and catalysts play a vital role in promoting pollutant degradation and fuel gas production. The challenges for the development of theoretical methods and the revelation of accurate mechanisms are proposed, aiming to provide scientific support for optimizing the reaction process and reactor design.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025527012400271X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012400271X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

ReaxFF方法具有合理的精度和极高的计算效率,有利于模拟复杂的反应过程。考虑到超临界水技术在污染降解和资源化方面的有效性,我们将 ReaxFF 方法引入到超临界水技术的污染物处理中,以确定反应机理,弥补了复杂超临界条件下实验测量的困难。在此基础上,对各种废水降解和煤气化的反应机理和动态过程进行了大量研究。超临界水与添加的氧化剂和催化剂在促进污染物降解和燃料气体生产方面发挥着至关重要的作用。提出了理论方法的发展和准确机制的揭示所面临的挑战,旨在为优化反应过程和反应器设计提供科学支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReaxFF molecular dynamics for pollution degradation and resourcization in the supercritical water system

ReaxFF method has both reasonable accuracy and competitive computational efficiency, which is conducive to simulating complex reaction processes. Considering that supercritical water technology is effective in pollution degradation and resourcization, we have introduced ReaxFF method to pollutants treatment with SCW technology to identify the reaction mechanism, which makes up for the difficulty in experimental measurement under complex supercritical conditions. Based on this, significant efforts have been made to identify the reaction mechanism and dynamic process in various wastewater degradation and coal gasification. Supercritical water, coupled with added oxidants and catalysts play a vital role in promoting pollutant degradation and fuel gas production. The challenges for the development of theoretical methods and the revelation of accurate mechanisms are proposed, aiming to provide scientific support for optimizing the reaction process and reactor design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信