线性二次GUP和热力学降维

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
H. Ramezani, K. Nozari
{"title":"线性二次GUP和热力学降维","authors":"H. Ramezani,&nbsp;K. Nozari","doi":"10.1016/j.aop.2024.169752","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate the statistical mechanics within the Linear–Quadratic GUP (LQGUP, i.e, GUP with linear and quadratic terms in momentum) models in the semiclassical regime. Then, some thermodynamic properties of a system of 3-dimensional harmonic oscillators are investigated by calculating the deformed partition functions. According to the equipartition theorem, we show that the number of accessible microstates decreases sharply in the very high temperatures regime. When the thermal de Broglie wavelength is of the order of the Planck length, three degrees of freedom are frozen in this setup. In other words, it is observed that there is an effective reduction of the degrees of freedom from 6 to 3 for a system of 3D harmonic oscillators in this framework. The calculations are carried out using both approximate analytical and exact numerical methods. The results of the analytical method are also presented in the form of thermal wavelengths for better understanding. Finally, the case of a 2-dimensional harmonic is treated as another example to comprehend the results, leading to a reduction of the degrees of freedom from 4 to 2.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"469 ","pages":"Article 169752"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear–quadratic GUP and thermodynamic dimensional reduction\",\"authors\":\"H. Ramezani,&nbsp;K. Nozari\",\"doi\":\"10.1016/j.aop.2024.169752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we investigate the statistical mechanics within the Linear–Quadratic GUP (LQGUP, i.e, GUP with linear and quadratic terms in momentum) models in the semiclassical regime. Then, some thermodynamic properties of a system of 3-dimensional harmonic oscillators are investigated by calculating the deformed partition functions. According to the equipartition theorem, we show that the number of accessible microstates decreases sharply in the very high temperatures regime. When the thermal de Broglie wavelength is of the order of the Planck length, three degrees of freedom are frozen in this setup. In other words, it is observed that there is an effective reduction of the degrees of freedom from 6 to 3 for a system of 3D harmonic oscillators in this framework. The calculations are carried out using both approximate analytical and exact numerical methods. The results of the analytical method are also presented in the form of thermal wavelengths for better understanding. Finally, the case of a 2-dimensional harmonic is treated as another example to comprehend the results, leading to a reduction of the degrees of freedom from 4 to 2.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"469 \",\"pages\":\"Article 169752\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001593\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001593","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半经典体系中线性-二次GUP(LQGUP,即动量中包含线性和二次项的GUP)模型的统计力学。然后,通过计算变形分区函数,研究了三维谐振子系统的一些热力学性质。根据等分定理,我们发现在极高温体系中,可访问微态的数量急剧下降。当热德布罗格利波长达到普朗克长度的数量级时,三个自由度在此设置中被冻结。换句话说,在此框架下,三维谐振子系统的自由度从 6 个有效减少到 3 个。计算同时使用了近似分析和精确数值方法。分析方法的结果也以热波长的形式呈现,以便更好地理解。最后,我们还以二维谐波为例理解计算结果,从而将自由度从 4 个减少到 2 个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear–quadratic GUP and thermodynamic dimensional reduction

In this paper we investigate the statistical mechanics within the Linear–Quadratic GUP (LQGUP, i.e, GUP with linear and quadratic terms in momentum) models in the semiclassical regime. Then, some thermodynamic properties of a system of 3-dimensional harmonic oscillators are investigated by calculating the deformed partition functions. According to the equipartition theorem, we show that the number of accessible microstates decreases sharply in the very high temperatures regime. When the thermal de Broglie wavelength is of the order of the Planck length, three degrees of freedom are frozen in this setup. In other words, it is observed that there is an effective reduction of the degrees of freedom from 6 to 3 for a system of 3D harmonic oscillators in this framework. The calculations are carried out using both approximate analytical and exact numerical methods. The results of the analytical method are also presented in the form of thermal wavelengths for better understanding. Finally, the case of a 2-dimensional harmonic is treated as another example to comprehend the results, leading to a reduction of the degrees of freedom from 4 to 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信