{"title":"论三角形向量置换多项式单元的结构、其单位群和诱导置换群","authors":"Amr Ali Abdulkader Al-Maktry","doi":"10.1016/j.jpaa.2024.107789","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span> and let <em>R</em> be a commutative ring with identity <span><math><mn>1</mn><mo>≠</mo><mn>0</mn></math></span> and <span><math><mi>R</mi><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> the set of all <em>n</em>-tuples of polynomials of the form <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. We call these <em>n</em>-tuples vector-polynomials. We define composition on <span><math><mi>R</mi><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> by<span><span><span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>∘</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>,</mo><mtext> where </mtext><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>.</mo></math></span></span></span> In this paper, we investigate vector-polynomials of the form<span><span><span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></math></span> permutes the elements of <em>R</em> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> such that each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> maps <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span> into the units of <em>R</em> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>). We show that each such vector-polynomial permutes the elements of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and that the set of all such vector-polynomials <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a monoid with respect to composition. We also show that <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span> is invertible in <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> if and only if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>R</em>-automorphism of <span><math><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is invertible in <span><math><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. When <em>R</em> is finite, the monoid <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> induces a finite group of permutations of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Moreover, we decompose the monoid <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> into an iterated semi-direct product of <em>n</em> monoids. Such a decomposition allows us to obtain similar decompositions of its group of units and, when <em>R</em> is finite, of its induced group of permutations. Furthermore, the decomposition of the induced group helps us to characterize some of its properties.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001865/pdfft?md5=005e28025f8b89bcf8a3dc94d2d79381&pid=1-s2.0-S0022404924001865-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the structures of a monoid of triangular vector-permutation polynomials, its group of units and its induced group of permutations\",\"authors\":\"Amr Ali Abdulkader Al-Maktry\",\"doi\":\"10.1016/j.jpaa.2024.107789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span> and let <em>R</em> be a commutative ring with identity <span><math><mn>1</mn><mo>≠</mo><mn>0</mn></math></span> and <span><math><mi>R</mi><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> the set of all <em>n</em>-tuples of polynomials of the form <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. We call these <em>n</em>-tuples vector-polynomials. We define composition on <span><math><mi>R</mi><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> by<span><span><span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>∘</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>,</mo><mtext> where </mtext><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>,</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>.</mo></math></span></span></span> In this paper, we investigate vector-polynomials of the form<span><span><span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>=</mo><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></math></span> permutes the elements of <em>R</em> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> such that each <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> maps <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span> into the units of <em>R</em> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>). We show that each such vector-polynomial permutes the elements of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and that the set of all such vector-polynomials <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a monoid with respect to composition. We also show that <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span> is invertible in <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> if and only if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>R</em>-automorphism of <span><math><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is invertible in <span><math><mi>R</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. When <em>R</em> is finite, the monoid <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> induces a finite group of permutations of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Moreover, we decompose the monoid <span><math><msub><mrow><mi>MT</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> into an iterated semi-direct product of <em>n</em> monoids. Such a decomposition allows us to obtain similar decompositions of its group of units and, when <em>R</em> is finite, of its induced group of permutations. Furthermore, the decomposition of the induced group helps us to characterize some of its properties.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001865/pdfft?md5=005e28025f8b89bcf8a3dc94d2d79381&pid=1-s2.0-S0022404924001865-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001865\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001865","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the structures of a monoid of triangular vector-permutation polynomials, its group of units and its induced group of permutations
Let and let R be a commutative ring with identity and the set of all n-tuples of polynomials of the form , where . We call these n-tuples vector-polynomials. We define composition on by In this paper, we investigate vector-polynomials of the form where permutes the elements of R and such that each maps into the units of R (). We show that each such vector-polynomial permutes the elements of and that the set of all such vector-polynomials is a monoid with respect to composition. We also show that is invertible in if and only if is an R-automorphism of and is invertible in for . When R is finite, the monoid induces a finite group of permutations of . Moreover, we decompose the monoid into an iterated semi-direct product of n monoids. Such a decomposition allows us to obtain similar decompositions of its group of units and, when R is finite, of its induced group of permutations. Furthermore, the decomposition of the induced group helps us to characterize some of its properties.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.