{"title":"二维自适应动力学系统的连续渗流","authors":"Chang Liu, Jia-Qi Dong, Lian-Chun Yu, Liang Huang","doi":"10.1103/physreve.110.024111","DOIUrl":null,"url":null,"abstract":"The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated. In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating state. These two parameters are inversely proportional to each other at the critical state, and the critical filling factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks. It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation, local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which renders the system overall robust against perturbations.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuum percolation of two-dimensional adaptive dynamics systems\",\"authors\":\"Chang Liu, Jia-Qi Dong, Lian-Chun Yu, Liang Huang\",\"doi\":\"10.1103/physreve.110.024111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated. In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating state. These two parameters are inversely proportional to each other at the critical state, and the critical filling factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks. It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation, local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which renders the system overall robust against perturbations.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024111\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024111","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Continuum percolation of two-dimensional adaptive dynamics systems
The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated. In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating state. These two parameters are inversely proportional to each other at the critical state, and the critical filling factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks. It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation, local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which renders the system overall robust against perturbations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.