Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith
{"title":"运行和翻滚粒子的局部时间和占用时间统计的巨大偏差","authors":"Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith","doi":"10.1103/physreve.110.024107","DOIUrl":null,"url":null,"abstract":"We investigate the statistics of the local time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">T</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>δ</mi><mrow><mo>(</mo></mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math> that a run and tumble particle (RTP) <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>)</mo></mrow></math> satisfies the large deviation principle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mrow><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>T</mi><mspace width=\"0.16em\"></mspace><mi>I</mi><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>/</mo><mi>T</mi><mo>)</mo></mrow></msup></mrow></math> in the large observation time limit <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math>. Remarkably, we find that in the presence of drift the rate function <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>I</mi><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow></math> is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"script\">R</mi></math> that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\"script\">R</mi><mo>=</mo><mi>T</mi><mo>)</mo></mrow></math> that the particle does not exit the interval up to time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large deviations in statistics of the local time and occupation time for a run and tumble particle\",\"authors\":\"Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith\",\"doi\":\"10.1103/physreve.110.024107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the statistics of the local time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">T</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>δ</mi><mrow><mo>(</mo></mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math> that a run and tumble particle (RTP) <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>)</mo></mrow></math> satisfies the large deviation principle <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mrow><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>T</mi><mspace width=\\\"0.16em\\\"></mspace><mi>I</mi><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>/</mo><mi>T</mi><mo>)</mo></mrow></msup></mrow></math> in the large observation time limit <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math>. Remarkably, we find that in the presence of drift the rate function <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>I</mi><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow></math> is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"script\\\">R</mi></math> that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\\\"script\\\">R</mi><mo>=</mo><mi>T</mi><mo>)</mo></mrow></math> that the particle does not exit the interval up to time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math>. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024107\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024107","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Large deviations in statistics of the local time and occupation time for a run and tumble particle
We investigate the statistics of the local time that a run and tumble particle (RTP) in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution satisfies the large deviation principle in the large observation time limit . Remarkably, we find that in the presence of drift the rate function is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability that the particle does not exit the interval up to time . We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.