运行和翻滚粒子的局部时间和占用时间统计的巨大偏差

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith
{"title":"运行和翻滚粒子的局部时间和占用时间统计的巨大偏差","authors":"Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith","doi":"10.1103/physreve.110.024107","DOIUrl":null,"url":null,"abstract":"We investigate the statistics of the local time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">T</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>δ</mi><mrow><mo>(</mo></mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math> that a run and tumble particle (RTP) <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>)</mo></mrow></math> satisfies the large deviation principle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mrow><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>T</mi><mspace width=\"0.16em\"></mspace><mi>I</mi><mo>(</mo><mi mathvariant=\"script\">T</mi><mo>/</mo><mi>T</mi><mo>)</mo></mrow></msup></mrow></math> in the large observation time limit <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math>. Remarkably, we find that in the presence of drift the rate function <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>I</mi><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow></math> is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"script\">R</mi></math> that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\"script\">R</mi><mo>=</mo><mi>T</mi><mo>)</mo></mrow></math> that the particle does not exit the interval up to time <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math>. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large deviations in statistics of the local time and occupation time for a run and tumble particle\",\"authors\":\"Soheli Mukherjee, Pierre Le Doussal, Naftali R. Smith\",\"doi\":\"10.1103/physreve.110.024107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the statistics of the local time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">T</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>T</mi></msubsup><mi>δ</mi><mrow><mo>(</mo></mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math> that a run and tumble particle (RTP) <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math> in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>)</mo></mrow></math> satisfies the large deviation principle <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mrow><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>T</mi><mspace width=\\\"0.16em\\\"></mspace><mi>I</mi><mo>(</mo><mi mathvariant=\\\"script\\\">T</mi><mo>/</mo><mi>T</mi><mo>)</mo></mrow></msup></mrow></math> in the large observation time limit <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math>. Remarkably, we find that in the presence of drift the rate function <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>I</mi><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow></math> is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"script\\\">R</mi></math> that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi mathvariant=\\\"script\\\">R</mi><mo>=</mo><mi>T</mi><mo>)</mo></mrow></math> that the particle does not exit the interval up to time <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math>. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024107\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024107","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一维中的运行和翻滚粒子(RTP)x(t)在有或没有外部漂移的情况下在原点花费的局部时间T=∫0Tδ(x(t))dt的统计量。通过将局部时间与 RTP 穿过原点的次数联系起来,我们发现局部时间分布 P(T) 满足大观测时间极限 T→∞ 中的大偏差原理 P(T)∼e-TI(T/T)。值得注意的是,我们发现在存在漂移的情况下,速率函数 I(ρ) 是非解析的:我们将其奇点解释为一阶动态相变。然后,我们通过研究 RTP 在有限区间内停留的时间 R 的统计量(即占用时间)来扩展这些结果,并得出了性质上相似的结果。我们发现,条件端点分布表现出一种有趣的行为变化,即随着区间大小的变化,从单峰到双峰。为了研究占据时间统计,我们将 Donsker-Varadhan 大偏差形式主义扩展到了 RTP 的情况,适用于一般动态观测变量,并且可能存在外部势能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large deviations in statistics of the local time and occupation time for a run and tumble particle

Large deviations in statistics of the local time and occupation time for a run and tumble particle
We investigate the statistics of the local time T=0Tδ(x(t))dt that a run and tumble particle (RTP) x(t) in one dimension spends at the origin, with or without an external drift. By relating the local time to the number of times the RTP crosses the origin, we find that the local time distribution P(T) satisfies the large deviation principle P(T)eTI(T/T) in the large observation time limit T. Remarkably, we find that in the presence of drift the rate function I(ρ) is nonanalytic: we interpret its singularity as a dynamical phase transition of first order. We then extend these results by studying the statistics of the amount of time R that the RTP spends inside a finite interval (i.e., the occupation time), with qualitatively similar results. In particular, this yields the long-time decay rate of the probability P(R=T) that the particle does not exit the interval up to time T. We find that the conditional end-point distribution exhibits an interesting change of behavior from unimodal to bimodal as a function of the size of the interval. To study the occupation time statistics, we extend the Donsker-Varadhan large-deviation formalism to the case of RTPs, for general dynamical observables and possibly in the presence of an external potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信