{"title":"周期性驱动两级系统的热容量","authors":"Elena Rufeil Fiori, Christian Maes","doi":"10.1103/physreve.110.024121","DOIUrl":null,"url":null,"abstract":"We define the heat capacity for steady periodically driven systems and as an example we compute it for dissipative two-level systems where the energy gap is time-modulated. There, as a function of ambient temperature, the Schottky peak remains the dominant feature. Yet, in contrast with equilibrium, the quasistatic thermal response of a nonequilibrium system also reveals kinetic information present in the transition rates; e.g., the heat capacity depends on the time-symmetric reactivities and changes by the presence of a kinetic barrier. It still vanishes though at absolute zero, in accord with an extended Nernst heat postulate, but at a different rate from the equilibrium case. More generally, we discuss the dependence on driving frequency and amplitude.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat capacity of periodically driven two-level systems\",\"authors\":\"Elena Rufeil Fiori, Christian Maes\",\"doi\":\"10.1103/physreve.110.024121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the heat capacity for steady periodically driven systems and as an example we compute it for dissipative two-level systems where the energy gap is time-modulated. There, as a function of ambient temperature, the Schottky peak remains the dominant feature. Yet, in contrast with equilibrium, the quasistatic thermal response of a nonequilibrium system also reveals kinetic information present in the transition rates; e.g., the heat capacity depends on the time-symmetric reactivities and changes by the presence of a kinetic barrier. It still vanishes though at absolute zero, in accord with an extended Nernst heat postulate, but at a different rate from the equilibrium case. More generally, we discuss the dependence on driving frequency and amplitude.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024121\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Heat capacity of periodically driven two-level systems
We define the heat capacity for steady periodically driven systems and as an example we compute it for dissipative two-level systems where the energy gap is time-modulated. There, as a function of ambient temperature, the Schottky peak remains the dominant feature. Yet, in contrast with equilibrium, the quasistatic thermal response of a nonequilibrium system also reveals kinetic information present in the transition rates; e.g., the heat capacity depends on the time-symmetric reactivities and changes by the presence of a kinetic barrier. It still vanishes though at absolute zero, in accord with an extended Nernst heat postulate, but at a different rate from the equilibrium case. More generally, we discuss the dependence on driving frequency and amplitude.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.