解压进程的工作分配

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Peter Werner, Alexander K. Hartmann, Satya N. Majumdar
{"title":"解压进程的工作分配","authors":"Peter Werner, Alexander K. Hartmann, Satya N. Majumdar","doi":"10.1103/physreve.110.024115","DOIUrl":null,"url":null,"abstract":"A simple zipper model is introduced, representing in a simplified way, e.g., the folded DNA double helix or hairpin structures in RNA. The double stranded hairpin is connected to a heat bath at temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> and subject to an external force <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math>, which couples to the free length <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> of the unzipped sequence. The leftmost zipped position can be seen as the position of a random walker in a special external field. Increasing the force leads to a zipping-unzipping first-order phase transition at a critical force <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>f</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> in the thermodynamic limit of a very large chain. We compute analytically, as a function of temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> and force <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>f</mi></math>, the full distribution <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi>L</mi><mo>)</mo></mrow></math> of free lengths in the thermodynamic limit and show that it is qualitatively very different for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>f</mi><mo>&lt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow><mo>,</mo><mo> </mo><mrow><mi>f</mi><mo>=</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>f</mi><mo>&gt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math>. Next we consider quasistatic work processes where the force is incremented according to a linear protocol. Having obtained <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi>L</mi><mo>)</mo></mrow></math> already allows us to derive an analytical expression for the work distribution <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>P</mi><mo>(</mo><mi>W</mi><mo>)</mo></mrow></math> in the zipped phase <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>f</mi><mo>&lt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math> for a long chain. We compute the large-deviation tails of the work distribution explicitly. This distribution can be interpreted as work distribution for an oscillatorylike model. Our analytical result for the work distribution is compared over a large range of the support down to probabilities as small as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>200</mn></mrow></msup></math> with numerical simulations performed by applying sophisticated large-deviation algorithms.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work distribution for unzipping processes\",\"authors\":\"Peter Werner, Alexander K. Hartmann, Satya N. Majumdar\",\"doi\":\"10.1103/physreve.110.024115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple zipper model is introduced, representing in a simplified way, e.g., the folded DNA double helix or hairpin structures in RNA. The double stranded hairpin is connected to a heat bath at temperature <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> and subject to an external force <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math>, which couples to the free length <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math> of the unzipped sequence. The leftmost zipped position can be seen as the position of a random walker in a special external field. Increasing the force leads to a zipping-unzipping first-order phase transition at a critical force <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>f</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math> in the thermodynamic limit of a very large chain. We compute analytically, as a function of temperature <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> and force <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>f</mi></math>, the full distribution <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi>L</mi><mo>)</mo></mrow></math> of free lengths in the thermodynamic limit and show that it is qualitatively very different for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>f</mi><mo>&lt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow><mo>,</mo><mo> </mo><mrow><mi>f</mi><mo>=</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>f</mi><mo>&gt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math>. Next we consider quasistatic work processes where the force is incremented according to a linear protocol. Having obtained <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi>L</mi><mo>)</mo></mrow></math> already allows us to derive an analytical expression for the work distribution <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>P</mi><mo>(</mo><mi>W</mi><mo>)</mo></mrow></math> in the zipped phase <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>f</mi><mo>&lt;</mo><msub><mi>f</mi><mi>c</mi></msub></mrow></math> for a long chain. We compute the large-deviation tails of the work distribution explicitly. This distribution can be interpreted as work distribution for an oscillatorylike model. Our analytical result for the work distribution is compared over a large range of the support down to probabilities as small as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mrow><mo>−</mo><mn>200</mn></mrow></msup></math> with numerical simulations performed by applying sophisticated large-deviation algorithms.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024115\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024115","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个简单的拉链模型,以简化的方式表示折叠的 DNA 双螺旋或 RNA 中的发夹结构。双链发夹连接到温度为 T 的热浴中,并受到外力 f 的作用,该外力与未拉链序列的自由长度 L 相耦合。最左边的拉链位置可以看作是一个随机漫步者在一个特殊外场中的位置。在一个非常大的链的热力学极限中,增加力会导致在临界力 fc(T) 处出现拉链-解拉链的一阶相变。作为温度 T 和力 f 的函数,我们分析计算了热力学极限下自由长度的全分布 P(L),并表明在 f<fc、f=fc 和 f>fc 时,自由长度的全分布有很大不同。接下来,我们将考虑力按照线性协议递增的准静态功过程。得到 P(L) 后,我们就可以推导出长链在拉链阶段 f<fc 的功分布 P(W) 的分析表达式。我们明确计算了工作量分布的大偏差尾部。该分布可解释为类似振荡模型的功分布。我们对功分布的分析结果与应用复杂的大偏差算法进行的数值模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Work distribution for unzipping processes

Work distribution for unzipping processes
A simple zipper model is introduced, representing in a simplified way, e.g., the folded DNA double helix or hairpin structures in RNA. The double stranded hairpin is connected to a heat bath at temperature T and subject to an external force f, which couples to the free length L of the unzipped sequence. The leftmost zipped position can be seen as the position of a random walker in a special external field. Increasing the force leads to a zipping-unzipping first-order phase transition at a critical force fc(T) in the thermodynamic limit of a very large chain. We compute analytically, as a function of temperature T and force f, the full distribution P(L) of free lengths in the thermodynamic limit and show that it is qualitatively very different for f<fc, f=fc, and f>fc. Next we consider quasistatic work processes where the force is incremented according to a linear protocol. Having obtained P(L) already allows us to derive an analytical expression for the work distribution P(W) in the zipped phase f<fc for a long chain. We compute the large-deviation tails of the work distribution explicitly. This distribution can be interpreted as work distribution for an oscillatorylike model. Our analytical result for the work distribution is compared over a large range of the support down to probabilities as small as 10200 with numerical simulations performed by applying sophisticated large-deviation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信