{"title":"测试太阳风湍流波动在动力学尺度上的马尔可夫转移特性","authors":"Dariusz Wójcik, Wiesław M. Macek","doi":"10.1103/physreve.110.025203","DOIUrl":null,"url":null,"abstract":"We apply statistical analysis to search for processes responsible for turbulence in physical systems. In our previous studies, we have shown that solar wind turbulence in the inertial range of large magnetohydrodynamic scales exhibits Markov properties. We have recently extended this approach on much smaller kinetic scales. Here we are testing for the Markovian character of stochastic processes in a kinetic regime based on magnetic field and velocity fluctuations in the solar wind, measured onboard the Magnetospheric Multiscale (MMS) mission: behind the bow shock, inside the magnetosheath, and near the magnetopause. We have verified that the Chapman-Kolmogorov necessary conditions for Markov processes is satisfied for <i>local</i> transfer of energy between the magnetic and velocity fields also on kinetic scales. We have confirmed that for magnetic fluctuations, the first Kramers-Moyal coefficient is linear, while the second term is quadratic, corresponding to drift and diffusion processes in the resulting Fokker-Planck equation. It means that magnetic self-similar turbulence is described by generalized Ornstein-Uhlenbeck processes. We show that for the magnetic case, the Fokker-Planck equation leads to the probability density functions of the kappa distributions, which exhibit global universal <i>scale invariance</i> with a linear scaling and lack of intermittency. On the contrary, for velocity fluctuations, higher order Kramers-Moyal coefficients should be taken into account and hence scale invariance is not observed. However, the nonextensity parameter in Tsallis entropy provides a robust measure of the departure of the system from equilibrium. The obtained results are important for a better understanding of the physical mechanism governing turbulent systems in space and laboratory.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales\",\"authors\":\"Dariusz Wójcik, Wiesław M. Macek\",\"doi\":\"10.1103/physreve.110.025203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply statistical analysis to search for processes responsible for turbulence in physical systems. In our previous studies, we have shown that solar wind turbulence in the inertial range of large magnetohydrodynamic scales exhibits Markov properties. We have recently extended this approach on much smaller kinetic scales. Here we are testing for the Markovian character of stochastic processes in a kinetic regime based on magnetic field and velocity fluctuations in the solar wind, measured onboard the Magnetospheric Multiscale (MMS) mission: behind the bow shock, inside the magnetosheath, and near the magnetopause. We have verified that the Chapman-Kolmogorov necessary conditions for Markov processes is satisfied for <i>local</i> transfer of energy between the magnetic and velocity fields also on kinetic scales. We have confirmed that for magnetic fluctuations, the first Kramers-Moyal coefficient is linear, while the second term is quadratic, corresponding to drift and diffusion processes in the resulting Fokker-Planck equation. It means that magnetic self-similar turbulence is described by generalized Ornstein-Uhlenbeck processes. We show that for the magnetic case, the Fokker-Planck equation leads to the probability density functions of the kappa distributions, which exhibit global universal <i>scale invariance</i> with a linear scaling and lack of intermittency. On the contrary, for velocity fluctuations, higher order Kramers-Moyal coefficients should be taken into account and hence scale invariance is not observed. However, the nonextensity parameter in Tsallis entropy provides a robust measure of the departure of the system from equilibrium. The obtained results are important for a better understanding of the physical mechanism governing turbulent systems in space and laboratory.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.025203\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.025203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales
We apply statistical analysis to search for processes responsible for turbulence in physical systems. In our previous studies, we have shown that solar wind turbulence in the inertial range of large magnetohydrodynamic scales exhibits Markov properties. We have recently extended this approach on much smaller kinetic scales. Here we are testing for the Markovian character of stochastic processes in a kinetic regime based on magnetic field and velocity fluctuations in the solar wind, measured onboard the Magnetospheric Multiscale (MMS) mission: behind the bow shock, inside the magnetosheath, and near the magnetopause. We have verified that the Chapman-Kolmogorov necessary conditions for Markov processes is satisfied for local transfer of energy between the magnetic and velocity fields also on kinetic scales. We have confirmed that for magnetic fluctuations, the first Kramers-Moyal coefficient is linear, while the second term is quadratic, corresponding to drift and diffusion processes in the resulting Fokker-Planck equation. It means that magnetic self-similar turbulence is described by generalized Ornstein-Uhlenbeck processes. We show that for the magnetic case, the Fokker-Planck equation leads to the probability density functions of the kappa distributions, which exhibit global universal scale invariance with a linear scaling and lack of intermittency. On the contrary, for velocity fluctuations, higher order Kramers-Moyal coefficients should be taken into account and hence scale invariance is not observed. However, the nonextensity parameter in Tsallis entropy provides a robust measure of the departure of the system from equilibrium. The obtained results are important for a better understanding of the physical mechanism governing turbulent systems in space and laboratory.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.