{"title":"随机漫步未访问地点的相关渗流临界指数","authors":"Raz Halifa Levi, Yacov Kantor","doi":"10.1103/physreve.110.024116","DOIUrl":null,"url":null,"abstract":"We consider a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-dimensional correlated percolation problem of sites <i>not</i> visited by a random walk on a hypercubic lattice <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>L</mi><mi>d</mi></msup></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math>, 4, and 5. The length of the random walk is <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">N</mi><mo>=</mo><mi>u</mi><msup><mi>L</mi><mi>d</mi></msup></mrow></math>. Close to the critical value <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>u</mi><mo>=</mo><msub><mi>u</mi><mi>c</mi></msub></mrow></math>, many geometrical properties of the problem can be described as powers (critical exponents) of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>u</mi><mi>c</mi></msub><mo>−</mo><mi>u</mi></mrow></math>, such as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math>, which controls the strength of the spanning cluster, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math>, which characterizes the behavior of the mean finite cluster size <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math>. We show that at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>u</mi><mi>c</mi></msub></math> the ratio between the mean mass of the largest cluster <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>M</mi><mn>1</mn></msub></math> and the mass of the second largest cluster <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>M</mi><mn>2</mn></msub></math> is independent of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> and can be used to find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>u</mi><mi>c</mi></msub></math>. We calculate <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> from the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math> dependence of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>M</mi><mn>1</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>M</mi><mn>2</mn></msub></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> from the finite size scaling of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>S</mi></math>. The resulting exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> remains close to 1 in all dimensions. The exponent <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> decreases from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>≈</mo><mn>3.9</mn></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>≈</mo><mn>1.9</mn></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>4</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>≈</mo><mn>1.3</mn></mrow></math> in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>5</mn></mrow></math> towards <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow></math> expected in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></math>, which is close to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>=</mo><mn>4</mn><mo>/</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></math>.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"78 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical exponents of correlated percolation of sites not visited by a random walk\",\"authors\":\"Raz Halifa Levi, Yacov Kantor\",\"doi\":\"10.1103/physreve.110.024116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-dimensional correlated percolation problem of sites <i>not</i> visited by a random walk on a hypercubic lattice <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>L</mi><mi>d</mi></msup></math> for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math>, 4, and 5. The length of the random walk is <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">N</mi><mo>=</mo><mi>u</mi><msup><mi>L</mi><mi>d</mi></msup></mrow></math>. Close to the critical value <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>u</mi><mo>=</mo><msub><mi>u</mi><mi>c</mi></msub></mrow></math>, many geometrical properties of the problem can be described as powers (critical exponents) of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>u</mi><mi>c</mi></msub><mo>−</mo><mi>u</mi></mrow></math>, such as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>β</mi></math>, which controls the strength of the spanning cluster, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math>, which characterizes the behavior of the mean finite cluster size <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math>. We show that at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>u</mi><mi>c</mi></msub></math> the ratio between the mean mass of the largest cluster <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>M</mi><mn>1</mn></msub></math> and the mass of the second largest cluster <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>M</mi><mn>2</mn></msub></math> is independent of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math> and can be used to find <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>u</mi><mi>c</mi></msub></math>. We calculate <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>β</mi></math> from the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math> dependence of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>M</mi><mn>1</mn></msub></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>M</mi><mn>2</mn></msub></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> from the finite size scaling of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>S</mi></math>. The resulting exponent <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>β</mi></math> remains close to 1 in all dimensions. The exponent <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> decreases from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>≈</mo><mn>3.9</mn></mrow></math> in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>≈</mo><mn>1.9</mn></mrow></math> in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>4</mn></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>≈</mo><mn>1.3</mn></mrow></math> in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>5</mn></mrow></math> towards <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow></math> expected in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></math>, which is close to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>=</mo><mn>4</mn><mo>/</mo><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></math>.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024116\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一个 d 维的相关渗滤问题,即在 d=3、4 和 5 的超立方晶格 Ld 上,随机行走未访问的点的渗滤问题。随机行走的长度为 N=uLd。在临界值 u=uc 附近,问题的许多几何特性都可以用 uc-u 的幂次(临界指数)来描述,如控制跨簇强度的 β 和描述平均有限簇大小 S 行为的 γ。我们证明,在 uc 时,最大簇 M1 的平均质量与第二大簇 M2 的质量之比与 L 无关,可以用来求出 uc。我们根据 M1 和 M2 与 L 的关系计算出 β,并根据 S 的有限大小缩放计算出 γ。指数γ从 d=3 时的≈3.9 下降到 d=4 时的≈1.9 和 d=5 时的≈1.3,最终在 d=6 时达到预期的 γ=1,接近 γ=4/(d-2)。
Critical exponents of correlated percolation of sites not visited by a random walk
We consider a -dimensional correlated percolation problem of sites not visited by a random walk on a hypercubic lattice for , 4, and 5. The length of the random walk is . Close to the critical value , many geometrical properties of the problem can be described as powers (critical exponents) of , such as , which controls the strength of the spanning cluster, and , which characterizes the behavior of the mean finite cluster size . We show that at the ratio between the mean mass of the largest cluster and the mass of the second largest cluster is independent of and can be used to find . We calculate from the dependence of and , and from the finite size scaling of . The resulting exponent remains close to 1 in all dimensions. The exponent decreases from in to in and in towards expected in , which is close to .
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.