{"title":"双曲切线纳米流体蠕动过渡时离子滑动流入产生的熵,以及运动陀螺微生物的修正达西-福克海默特性","authors":"","doi":"10.1016/j.asej.2024.102882","DOIUrl":null,"url":null,"abstract":"<div><p>In this theoretical paper, an investigation is conducted into the peristaltic transition of a hyperbolic tangent nanofluid that contains mobile gyrotactic microorganisms. This study examines the entropy generation resulting from magnetohydrodynamic (MHD) flow and heat transport. The analysis encompasses an anisotropically stenosed endoscope, which is influenced by Ion-slip, activation energy, viscous dissipation, Hall efficacy, Joule heating and entropy generation. The impacts of nonlinear thermal radiation and chemical processes with Soret and Dufour schemes are studied. The porous medium is described using a modified form of Darcy's principle involving a Forchheimer framework. The assumptions involve the extended wavelength besdes reduced Reynolds numeral. The homotopy perturbation strategy is employed to solve the resulting equations. The results show that the critical velocity rises as the local temperature Grashof numeral increases. Moreover, the study offers insights into the movement of digestive gastric fluid within the small intestine as the endoscope moves through.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2090447924002570/pdfft?md5=5b5614ba832da1a126268e998635b603&pid=1-s2.0-S2090447924002570-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Entropy generation with ion-slip influx on peristaltic transition of hyperbolic tangent nanofluid of motile gyrotactic microorganisms and modified Darcy-Forchheimer characteristic\",\"authors\":\"\",\"doi\":\"10.1016/j.asej.2024.102882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this theoretical paper, an investigation is conducted into the peristaltic transition of a hyperbolic tangent nanofluid that contains mobile gyrotactic microorganisms. This study examines the entropy generation resulting from magnetohydrodynamic (MHD) flow and heat transport. The analysis encompasses an anisotropically stenosed endoscope, which is influenced by Ion-slip, activation energy, viscous dissipation, Hall efficacy, Joule heating and entropy generation. The impacts of nonlinear thermal radiation and chemical processes with Soret and Dufour schemes are studied. The porous medium is described using a modified form of Darcy's principle involving a Forchheimer framework. The assumptions involve the extended wavelength besdes reduced Reynolds numeral. The homotopy perturbation strategy is employed to solve the resulting equations. The results show that the critical velocity rises as the local temperature Grashof numeral increases. Moreover, the study offers insights into the movement of digestive gastric fluid within the small intestine as the endoscope moves through.</p></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2090447924002570/pdfft?md5=5b5614ba832da1a126268e998635b603&pid=1-s2.0-S2090447924002570-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924002570\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924002570","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Entropy generation with ion-slip influx on peristaltic transition of hyperbolic tangent nanofluid of motile gyrotactic microorganisms and modified Darcy-Forchheimer characteristic
In this theoretical paper, an investigation is conducted into the peristaltic transition of a hyperbolic tangent nanofluid that contains mobile gyrotactic microorganisms. This study examines the entropy generation resulting from magnetohydrodynamic (MHD) flow and heat transport. The analysis encompasses an anisotropically stenosed endoscope, which is influenced by Ion-slip, activation energy, viscous dissipation, Hall efficacy, Joule heating and entropy generation. The impacts of nonlinear thermal radiation and chemical processes with Soret and Dufour schemes are studied. The porous medium is described using a modified form of Darcy's principle involving a Forchheimer framework. The assumptions involve the extended wavelength besdes reduced Reynolds numeral. The homotopy perturbation strategy is employed to solve the resulting equations. The results show that the critical velocity rises as the local temperature Grashof numeral increases. Moreover, the study offers insights into the movement of digestive gastric fluid within the small intestine as the endoscope moves through.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.