{"title":"大豆和玉米间作根瘤土壤中氮利用率对氨氧化微生物的影响","authors":"Yuhang Zhang, Runzhi Zhang, Shuchang Zhao, Shumin Li, Lingbo Meng","doi":"10.1007/s42729-024-01964-x","DOIUrl":null,"url":null,"abstract":"<p>Ammonia-oxidizing archaea (AOA) and Ammonia-oxidizing bacteria (AOB) are key microorganisms in the soil nitrogen cycle, but how they change in the intercropping system, affected by interspecific interaction and N application levels, is not clear. A field experiment of soybean/maize intercropping with three nitrogen application levels was designed. Illumina MiSeq sequencing was used to determine AOA and AOB diversity and communities in the rhizosphere of intercropped soybean and maize. Nitrogen absorption of maize grain has increased by 21.09% to 33.54% in intercropping compared with monoculture, while that of soybean was reduced, especially in 240 kg N·ha<sup>−1</sup>(N2). Our results showed that the α-diversity of AOA and AOB in the rhizosphere of maize was reduced in intercropping treatment across all N application levels. The opposite results were found in intercropped soybeans. Additionally, there was an increase in the α-diversity of AOB in the soybean rhizosphere with N2 treatments. Specifically, α-diversity of AOB in intercropped soybean in 240 kg N·ha<sup>−1</sup>(N2) increased by 10.45% and 1.6% relative to the 0 kg N·ha<sup>−1</sup>(N0) and 180 kg N·ha<sup>−1</sup>(N1), respectively. This effect is further magnified within the monocropped maize under 240 kg N·ha<sup>−1</sup>(N2), reflecting enhancements of 10.68% and 5.37%, respectively. Under intercropping conditions, the abundance of the dominant AOA genus, <i>Nitrososphaera</i>, significantly decreased more than sixfold under 180 kg N·ha<sup>−1</sup>(N1). Conversely, the abundance of the dominant AOB genus, <i>Nitrosospira</i>, increases with the higher nitrogen application rates, although intercropping exerts a diminishing influence. While its trend within the rhizosphere of soybean is the opposite. Moreover, Redundancy Analysis (RDA) and Mantel tests showed a correlation between variations in ammonia-oxidizing microbial communities and soil-available nitrogen content (<i>p</i> = 0.001, r > 0.4). Due to species competition after intercropping, the soil available nitrogen content decreased, resulting in changes in the soil ammonia-oxidizing microbial community. The results indicated that interspecific competition in intercropping systems could change the diversity and composition of AOA and AOB in the rhizosphere of crops, consequently influencing N transformation and enhancing nitrogen uptake. These findings elucidated the mechanisms of how intercropping systems bolster nitrogen-use efficiency through the dynamics of rhizosphere microorganisms.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Nitrogen Use Efficiency Towards Ammonia-Oxidizing Microbes in Rhizosphere Soil of Intercropped Soybean and Maize\",\"authors\":\"Yuhang Zhang, Runzhi Zhang, Shuchang Zhao, Shumin Li, Lingbo Meng\",\"doi\":\"10.1007/s42729-024-01964-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia-oxidizing archaea (AOA) and Ammonia-oxidizing bacteria (AOB) are key microorganisms in the soil nitrogen cycle, but how they change in the intercropping system, affected by interspecific interaction and N application levels, is not clear. A field experiment of soybean/maize intercropping with three nitrogen application levels was designed. Illumina MiSeq sequencing was used to determine AOA and AOB diversity and communities in the rhizosphere of intercropped soybean and maize. Nitrogen absorption of maize grain has increased by 21.09% to 33.54% in intercropping compared with monoculture, while that of soybean was reduced, especially in 240 kg N·ha<sup>−1</sup>(N2). Our results showed that the α-diversity of AOA and AOB in the rhizosphere of maize was reduced in intercropping treatment across all N application levels. The opposite results were found in intercropped soybeans. Additionally, there was an increase in the α-diversity of AOB in the soybean rhizosphere with N2 treatments. Specifically, α-diversity of AOB in intercropped soybean in 240 kg N·ha<sup>−1</sup>(N2) increased by 10.45% and 1.6% relative to the 0 kg N·ha<sup>−1</sup>(N0) and 180 kg N·ha<sup>−1</sup>(N1), respectively. This effect is further magnified within the monocropped maize under 240 kg N·ha<sup>−1</sup>(N2), reflecting enhancements of 10.68% and 5.37%, respectively. Under intercropping conditions, the abundance of the dominant AOA genus, <i>Nitrososphaera</i>, significantly decreased more than sixfold under 180 kg N·ha<sup>−1</sup>(N1). Conversely, the abundance of the dominant AOB genus, <i>Nitrosospira</i>, increases with the higher nitrogen application rates, although intercropping exerts a diminishing influence. While its trend within the rhizosphere of soybean is the opposite. Moreover, Redundancy Analysis (RDA) and Mantel tests showed a correlation between variations in ammonia-oxidizing microbial communities and soil-available nitrogen content (<i>p</i> = 0.001, r > 0.4). Due to species competition after intercropping, the soil available nitrogen content decreased, resulting in changes in the soil ammonia-oxidizing microbial community. The results indicated that interspecific competition in intercropping systems could change the diversity and composition of AOA and AOB in the rhizosphere of crops, consequently influencing N transformation and enhancing nitrogen uptake. These findings elucidated the mechanisms of how intercropping systems bolster nitrogen-use efficiency through the dynamics of rhizosphere microorganisms.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-01964-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01964-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of Nitrogen Use Efficiency Towards Ammonia-Oxidizing Microbes in Rhizosphere Soil of Intercropped Soybean and Maize
Ammonia-oxidizing archaea (AOA) and Ammonia-oxidizing bacteria (AOB) are key microorganisms in the soil nitrogen cycle, but how they change in the intercropping system, affected by interspecific interaction and N application levels, is not clear. A field experiment of soybean/maize intercropping with three nitrogen application levels was designed. Illumina MiSeq sequencing was used to determine AOA and AOB diversity and communities in the rhizosphere of intercropped soybean and maize. Nitrogen absorption of maize grain has increased by 21.09% to 33.54% in intercropping compared with monoculture, while that of soybean was reduced, especially in 240 kg N·ha−1(N2). Our results showed that the α-diversity of AOA and AOB in the rhizosphere of maize was reduced in intercropping treatment across all N application levels. The opposite results were found in intercropped soybeans. Additionally, there was an increase in the α-diversity of AOB in the soybean rhizosphere with N2 treatments. Specifically, α-diversity of AOB in intercropped soybean in 240 kg N·ha−1(N2) increased by 10.45% and 1.6% relative to the 0 kg N·ha−1(N0) and 180 kg N·ha−1(N1), respectively. This effect is further magnified within the monocropped maize under 240 kg N·ha−1(N2), reflecting enhancements of 10.68% and 5.37%, respectively. Under intercropping conditions, the abundance of the dominant AOA genus, Nitrososphaera, significantly decreased more than sixfold under 180 kg N·ha−1(N1). Conversely, the abundance of the dominant AOB genus, Nitrosospira, increases with the higher nitrogen application rates, although intercropping exerts a diminishing influence. While its trend within the rhizosphere of soybean is the opposite. Moreover, Redundancy Analysis (RDA) and Mantel tests showed a correlation between variations in ammonia-oxidizing microbial communities and soil-available nitrogen content (p = 0.001, r > 0.4). Due to species competition after intercropping, the soil available nitrogen content decreased, resulting in changes in the soil ammonia-oxidizing microbial community. The results indicated that interspecific competition in intercropping systems could change the diversity and composition of AOA and AOB in the rhizosphere of crops, consequently influencing N transformation and enhancing nitrogen uptake. These findings elucidated the mechanisms of how intercropping systems bolster nitrogen-use efficiency through the dynamics of rhizosphere microorganisms.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.