通过战略性断裂路径控制强化陶瓷接头

Jian Feng, Marion Herrmann, Antonio Hurtado
{"title":"通过战略性断裂路径控制强化陶瓷接头","authors":"Jian Feng, Marion Herrmann, Antonio Hurtado","doi":"10.1002/admt.202400535","DOIUrl":null,"url":null,"abstract":"Ceramic-on-ceramic joints are notorious for their inherent brittleness, posing challenges for high-performance applications. To address this, a novel approach is proposed to enhance the involvement of filler metals during fracture. This study investigates the controlled initiation and propagation of cracks in Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> joints through a strategic combination of laser pre-cracking, laser patterning, and laser active brazing techniques. By introducing pre-cracking and African daisy-like patterning, crack propagation dynamics are altered, with cracks initially confined within pre-crack regions before navigating through pattern intrusions. Additionally, laser active brazing effectively managed titanium diffusion, optimizing interface strength control. Evaluation via SEVNB tests demonstrated a significant enhancement in fracture toughness, achieving maximal 25.6 ± 4.6 MPa·m<sup>0.5</sup> compared to ≈3–5 MPa·m<sup>0.5</sup> for alumina ribbons. This integrated approach offers precise control over fracture paths, thereby augmenting the performance of ceramic-on-ceramic joints, and holds promise for advancing their applications in demanding environments.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toughening Ceramic Joints through Strategic Fracture Path Control\",\"authors\":\"Jian Feng, Marion Herrmann, Antonio Hurtado\",\"doi\":\"10.1002/admt.202400535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramic-on-ceramic joints are notorious for their inherent brittleness, posing challenges for high-performance applications. To address this, a novel approach is proposed to enhance the involvement of filler metals during fracture. This study investigates the controlled initiation and propagation of cracks in Al<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub> joints through a strategic combination of laser pre-cracking, laser patterning, and laser active brazing techniques. By introducing pre-cracking and African daisy-like patterning, crack propagation dynamics are altered, with cracks initially confined within pre-crack regions before navigating through pattern intrusions. Additionally, laser active brazing effectively managed titanium diffusion, optimizing interface strength control. Evaluation via SEVNB tests demonstrated a significant enhancement in fracture toughness, achieving maximal 25.6 ± 4.6 MPa·m<sup>0.5</sup> compared to ≈3–5 MPa·m<sup>0.5</sup> for alumina ribbons. This integrated approach offers precise control over fracture paths, thereby augmenting the performance of ceramic-on-ceramic joints, and holds promise for advancing their applications in demanding environments.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷基陶瓷接头因其固有的脆性而臭名昭著,给高性能应用带来了挑战。为解决这一问题,我们提出了一种新方法,以提高填充金属在断裂过程中的参与度。本研究通过激光预开裂、激光图案化和激光主动钎焊技术的战略性组合,研究了 Al2O3-Al2O3 接头中裂纹的受控引发和扩展。通过引入预裂纹和非洲菊花状图案,裂纹的传播动力学发生了改变,裂纹最初被限制在预裂纹区域内,然后才通过图案侵入。此外,激光主动钎焊有效地控制了钛扩散,优化了界面强度控制。通过 SEVNB 测试进行的评估表明,断裂韧性显著增强,最大达到 25.6 ± 4.6 MPa-m0.5,而氧化铝带的断裂韧性仅为 3-5 MPa-m0.5。这种综合方法可精确控制断裂路径,从而提高陶瓷接头的性能,并有望推动其在苛刻环境中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toughening Ceramic Joints through Strategic Fracture Path Control

Toughening Ceramic Joints through Strategic Fracture Path Control
Ceramic-on-ceramic joints are notorious for their inherent brittleness, posing challenges for high-performance applications. To address this, a novel approach is proposed to enhance the involvement of filler metals during fracture. This study investigates the controlled initiation and propagation of cracks in Al2O3–Al2O3 joints through a strategic combination of laser pre-cracking, laser patterning, and laser active brazing techniques. By introducing pre-cracking and African daisy-like patterning, crack propagation dynamics are altered, with cracks initially confined within pre-crack regions before navigating through pattern intrusions. Additionally, laser active brazing effectively managed titanium diffusion, optimizing interface strength control. Evaluation via SEVNB tests demonstrated a significant enhancement in fracture toughness, achieving maximal 25.6 ± 4.6 MPa·m0.5 compared to ≈3–5 MPa·m0.5 for alumina ribbons. This integrated approach offers precise control over fracture paths, thereby augmenting the performance of ceramic-on-ceramic joints, and holds promise for advancing their applications in demanding environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信