关于对球面的邻接傅立叶限制的极化序列

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Taryn C. Flock , Betsy Stovall
{"title":"关于对球面的邻接傅立叶限制的极化序列","authors":"Taryn C. Flock ,&nbsp;Betsy Stovall","doi":"10.1016/j.aim.2024.109854","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we develop a linear profile decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs <span><math><mi>p</mi><mo>&lt;</mo><mi>q</mi></math></span> for which this operator is bounded. Such theorems are new when <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>. We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if <span><math><mi>q</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>p</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></math></span>, or if <span><math><mi>q</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extremizing sequences for adjoint Fourier restriction to the sphere\",\"authors\":\"Taryn C. Flock ,&nbsp;Betsy Stovall\",\"doi\":\"10.1016/j.aim.2024.109854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we develop a linear profile decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs <span><math><mi>p</mi><mo>&lt;</mo><mi>q</mi></math></span> for which this operator is bounded. Such theorems are new when <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>. We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if <span><math><mi>q</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>p</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></math></span>, or if <span><math><mi>q</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003694\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003694","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为与球面相关的傅立叶限制算子的邻接算子建立了线性轮廓分解,对该算子有界的指数对有效。当......时,这种定理是新的。我们运用这些方法证明了有关球面扩展算子极值存在性和极值序列行为的新结果。也就是说,假定有界,如果 ,或者如果 ,并且算子规范超过抛物线扩展算子的算子规范的某个常数倍,则极值存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extremizing sequences for adjoint Fourier restriction to the sphere

In this article, we develop a linear profile decomposition for the LpLq adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs p<q for which this operator is bounded. Such theorems are new when p2. We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if q>max{p,d+2dp}, or if q=d+2dp and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信