{"title":"关于对球面的邻接傅立叶限制的极化序列","authors":"Taryn C. Flock , Betsy Stovall","doi":"10.1016/j.aim.2024.109854","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we develop a linear profile decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs <span><math><mi>p</mi><mo><</mo><mi>q</mi></math></span> for which this operator is bounded. Such theorems are new when <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>. We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if <span><math><mi>q</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mi>p</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></math></span>, or if <span><math><mi>q</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extremizing sequences for adjoint Fourier restriction to the sphere\",\"authors\":\"Taryn C. Flock , Betsy Stovall\",\"doi\":\"10.1016/j.aim.2024.109854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we develop a linear profile decomposition for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs <span><math><mi>p</mi><mo><</mo><mi>q</mi></math></span> for which this operator is bounded. Such theorems are new when <span><math><mi>p</mi><mo>≠</mo><mn>2</mn></math></span>. We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if <span><math><mi>q</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mi>p</mi><mo>,</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></math></span>, or if <span><math><mi>q</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi></mrow></mfrac><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003694\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003694","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On extremizing sequences for adjoint Fourier restriction to the sphere
In this article, we develop a linear profile decomposition for the adjoint Fourier restriction operator associated to the sphere, valid for exponent pairs for which this operator is bounded. Such theorems are new when . We apply these methods to prove new results regarding the existence of extremizers and the behavior of extremizing sequences for the spherical extension operator. Namely, assuming boundedness, extremizers exist if , or if and the operator norm exceeds a certain constant times the operator norm of the parabolic extension operator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.