论由曲线的伽罗瓦 G 盖族生成的志村曲线

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abolfazl Mohajer
{"title":"论由曲线的伽罗瓦 G 盖族生成的志村曲线","authors":"Abolfazl Mohajer","doi":"10.1016/j.aim.2024.109855","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that there are no families of cyclic <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-covers of elliptic curves which generate non-compact Shimura (special) curves that lie generically in the Torelli locus <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> of abelian varieties with <span><math><mi>g</mi><mo>≥</mo><mn>8</mn></math></span> when <em>n</em> has a proper prime factor <span><math><mi>p</mi><mo>≥</mo><mn>7</mn></math></span>. This non-existence is also shown for families of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-covers of curves of any genus <em>s</em> provided that <em>n</em> has a large enough prime factor <em>p</em> (depending on <em>s</em>). We achieve these results by applying the theory of Higgs bundles and the Viehweg-Zuo characterization of Shimura curves in the moduli space of principally polarized abelian varieties.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Shimura curves generated by families of Galois G-covers of curves\",\"authors\":\"Abolfazl Mohajer\",\"doi\":\"10.1016/j.aim.2024.109855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove that there are no families of cyclic <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-covers of elliptic curves which generate non-compact Shimura (special) curves that lie generically in the Torelli locus <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> of abelian varieties with <span><math><mi>g</mi><mo>≥</mo><mn>8</mn></math></span> when <em>n</em> has a proper prime factor <span><math><mi>p</mi><mo>≥</mo><mn>7</mn></math></span>. This non-existence is also shown for families of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-covers of curves of any genus <em>s</em> provided that <em>n</em> has a large enough prime factor <em>p</em> (depending on <em>s</em>). We achieve these results by applying the theory of Higgs bundles and the Viehweg-Zuo characterization of Shimura curves in the moduli space of principally polarized abelian varieties.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003700\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003700","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了不存在椭圆曲线的循环-覆盖族,它们生成的非紧凑的志村(特殊)曲线一般位于有适当质因数的非比利亚变体的托雷利(Torelli)位中。只要有一个足够大的质因数(取决于 ),这种不存在性也适用于任何种属的曲线的-覆盖族。我们通过应用希格斯束理论和主极化阿贝尔变体模空间中的志村曲线的维韦格-左特性来实现这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Shimura curves generated by families of Galois G-covers of curves

In this paper we prove that there are no families of cyclic Zn-covers of elliptic curves which generate non-compact Shimura (special) curves that lie generically in the Torelli locus Tg of abelian varieties with g8 when n has a proper prime factor p7. This non-existence is also shown for families of Zn-covers of curves of any genus s provided that n has a large enough prime factor p (depending on s). We achieve these results by applying the theory of Higgs bundles and the Viehweg-Zuo characterization of Shimura curves in the moduli space of principally polarized abelian varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信