{"title":"二维和三维空间中狄拉克-克莱因-戈登系统的全局稳定性","authors":"Qian Zhang","doi":"10.1007/s00526-024-02803-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study global nonlinear stability for the Dirac–Klein–Gordon system in two and three space dimensions for small and regular initial data. In the case of two space dimensions, we consider the Dirac–Klein–Gordon system with a massless Dirac field and a massive scalar field, and prove global existence, sharp time decay estimates and linear scattering for the solutions. In the case of three space dimensions, we consider the Dirac–Klein–Gordon system with a mass parameter in the Dirac equation, and prove uniform (in the mass parameter) global existence, unified time decay estimates and linear scattering in the top order energy space.\n</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"30 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global stability of the Dirac–Klein–Gordon system in two and three space dimensions\",\"authors\":\"Qian Zhang\",\"doi\":\"10.1007/s00526-024-02803-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study global nonlinear stability for the Dirac–Klein–Gordon system in two and three space dimensions for small and regular initial data. In the case of two space dimensions, we consider the Dirac–Klein–Gordon system with a massless Dirac field and a massive scalar field, and prove global existence, sharp time decay estimates and linear scattering for the solutions. In the case of three space dimensions, we consider the Dirac–Klein–Gordon system with a mass parameter in the Dirac equation, and prove uniform (in the mass parameter) global existence, unified time decay estimates and linear scattering in the top order energy space.\\n</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02803-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02803-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global stability of the Dirac–Klein–Gordon system in two and three space dimensions
In this paper we study global nonlinear stability for the Dirac–Klein–Gordon system in two and three space dimensions for small and regular initial data. In the case of two space dimensions, we consider the Dirac–Klein–Gordon system with a massless Dirac field and a massive scalar field, and prove global existence, sharp time decay estimates and linear scattering for the solutions. In the case of three space dimensions, we consider the Dirac–Klein–Gordon system with a mass parameter in the Dirac equation, and prove uniform (in the mass parameter) global existence, unified time decay estimates and linear scattering in the top order energy space.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.