{"title":"一维内聚断裂能相场近似临界点的收敛性","authors":"Marco Bonacini, Flaviana Iurlano","doi":"10.1007/s00526-024-02786-6","DOIUrl":null,"url":null,"abstract":"<p>Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via <span>\\(\\Gamma \\)</span>-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies\",\"authors\":\"Marco Bonacini, Flaviana Iurlano\",\"doi\":\"10.1007/s00526-024-02786-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via <span>\\\\(\\\\Gamma \\\\)</span>-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02786-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02786-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies
Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via \(\Gamma \)-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.