无穷远处完全极小曲面的几何及其反转的威尔莫尔指数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jonas Hirsch, Rob Kusner, Elena Mäder-Baumdicker
{"title":"无穷远处完全极小曲面的几何及其反转的威尔莫尔指数","authors":"Jonas Hirsch, Rob Kusner, Elena Mäder-Baumdicker","doi":"10.1007/s00526-024-02792-8","DOIUrl":null,"url":null,"abstract":"<p>We study complete minimal surfaces in <span>\\(\\mathbb {R}^n\\)</span> with finite total curvature and embedded planar ends. After conformal compactification via inversion, these yield examples of surfaces stationary for the Willmore bending energy <span>\\(\\mathcal {W}: =\\frac{1}{4} \\int |\\vec H|^2\\)</span>. In codimension one, we prove that the <span>\\(\\mathcal {W}\\)</span>-Morse index for any inverted minimal sphere or real projective plane with <i>m</i> such ends is exactly <span>\\(m-3=\\frac{\\mathcal {W}}{4\\pi }-3\\)</span>. We also consider several geometric properties—for example, the property that all <i>m</i> asymptotic planes meet at a single point—of these minimal surfaces and explore their relation to the <span>\\(\\mathcal {W}\\)</span>-Morse index of their inverted surfaces.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of complete minimal surfaces at infinity and the Willmore index of their inversions\",\"authors\":\"Jonas Hirsch, Rob Kusner, Elena Mäder-Baumdicker\",\"doi\":\"10.1007/s00526-024-02792-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study complete minimal surfaces in <span>\\\\(\\\\mathbb {R}^n\\\\)</span> with finite total curvature and embedded planar ends. After conformal compactification via inversion, these yield examples of surfaces stationary for the Willmore bending energy <span>\\\\(\\\\mathcal {W}: =\\\\frac{1}{4} \\\\int |\\\\vec H|^2\\\\)</span>. In codimension one, we prove that the <span>\\\\(\\\\mathcal {W}\\\\)</span>-Morse index for any inverted minimal sphere or real projective plane with <i>m</i> such ends is exactly <span>\\\\(m-3=\\\\frac{\\\\mathcal {W}}{4\\\\pi }-3\\\\)</span>. We also consider several geometric properties—for example, the property that all <i>m</i> asymptotic planes meet at a single point—of these minimal surfaces and explore their relation to the <span>\\\\(\\\\mathcal {W}\\\\)</span>-Morse index of their inverted surfaces.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02792-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02792-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是\(\mathbb {R}^n\)中具有有限总曲率和内嵌平面末端的完整极小曲面。在通过反转进行保角压实之后,这些曲面产生了静止于威尔莫尔弯曲能 \(\mathcal {W}: =\frac{1}{4} \int |\vec H|^2\) 的例子。在标度为一的情况下,我们证明任何倒置的极小球面或实投影面的莫尔斯指数(\(\mathcal {W}\)-Morse index)正好是\(m-3=\frac{mathcal {W}{4\pi }-3\)。我们还考虑了这些极小曲面的几个几何性质--例如,所有 m 个渐近平面在一个点相遇的性质,并探讨了它们与倒转曲面的 \(\mathcal {W}\)-Morse 索引的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of complete minimal surfaces at infinity and the Willmore index of their inversions

We study complete minimal surfaces in \(\mathbb {R}^n\) with finite total curvature and embedded planar ends. After conformal compactification via inversion, these yield examples of surfaces stationary for the Willmore bending energy \(\mathcal {W}: =\frac{1}{4} \int |\vec H|^2\). In codimension one, we prove that the \(\mathcal {W}\)-Morse index for any inverted minimal sphere or real projective plane with m such ends is exactly \(m-3=\frac{\mathcal {W}}{4\pi }-3\). We also consider several geometric properties—for example, the property that all m asymptotic planes meet at a single point—of these minimal surfaces and explore their relation to the \(\mathcal {W}\)-Morse index of their inverted surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信