无畏:无服务器边缘群的联合强化学习协调器

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Christos Sad;Dimosthenis Masouros;Kostas Siozios
{"title":"无畏:无服务器边缘群的联合强化学习协调器","authors":"Christos Sad;Dimosthenis Masouros;Kostas Siozios","doi":"10.1109/LES.2024.3410892","DOIUrl":null,"url":null,"abstract":"The rise of edge computing, characterized by swarms of edge devices, marks a significant shift in cloud-edge computing landscapes, moving data processing closer to the source of data generation. However, this paradigm introduces complexities in orchestration, as traditional centralized methods become inadequate for effectively managing distributed, dynamic edge environments. In this letter, we introduce FEARLESS, a distributed orchestration framework tailored for swarms of edge devices. FEARLESS employs a vertical federated reinforcement learning approach to efficiently orchestrate function invocation requests in serverless swarms. Experimental results demonstrate that FEARLESS significantly reduces the quality-of-service violations of the scheduled tasks by up to 57%, compared to a centralized “least-CPU-utilization” and a “local-execution” approach, while it also achieves approximately up to 20% average total energy reduction.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 1","pages":"34-37"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEARLESS: A Federated Reinforcement Learning Orchestrator for Serverless Edge Swarms\",\"authors\":\"Christos Sad;Dimosthenis Masouros;Kostas Siozios\",\"doi\":\"10.1109/LES.2024.3410892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of edge computing, characterized by swarms of edge devices, marks a significant shift in cloud-edge computing landscapes, moving data processing closer to the source of data generation. However, this paradigm introduces complexities in orchestration, as traditional centralized methods become inadequate for effectively managing distributed, dynamic edge environments. In this letter, we introduce FEARLESS, a distributed orchestration framework tailored for swarms of edge devices. FEARLESS employs a vertical federated reinforcement learning approach to efficiently orchestrate function invocation requests in serverless swarms. Experimental results demonstrate that FEARLESS significantly reduces the quality-of-service violations of the scheduled tasks by up to 57%, compared to a centralized “least-CPU-utilization” and a “local-execution” approach, while it also achieves approximately up to 20% average total energy reduction.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"17 1\",\"pages\":\"34-37\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10550922/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10550922/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

以大量边缘设备为特征的边缘计算的兴起标志着云边缘计算领域的重大转变,使数据处理更接近数据生成源。然而,这种范例在编排中引入了复杂性,因为传统的集中式方法已不足以有效地管理分布式、动态的边缘环境。在这封信中,我们介绍FEARLESS,一个为边缘设备群量身定制的分布式编排框架。FEARLESS采用垂直联合强化学习方法,在无服务器集群中有效地编排功能调用请求。实验结果表明,与集中式“最低cpu利用率”和“本地执行”方法相比,FEARLESS显著降低了计划任务的服务质量违规,最高可达57%,同时它还实现了大约20%的平均总能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FEARLESS: A Federated Reinforcement Learning Orchestrator for Serverless Edge Swarms
The rise of edge computing, characterized by swarms of edge devices, marks a significant shift in cloud-edge computing landscapes, moving data processing closer to the source of data generation. However, this paradigm introduces complexities in orchestration, as traditional centralized methods become inadequate for effectively managing distributed, dynamic edge environments. In this letter, we introduce FEARLESS, a distributed orchestration framework tailored for swarms of edge devices. FEARLESS employs a vertical federated reinforcement learning approach to efficiently orchestrate function invocation requests in serverless swarms. Experimental results demonstrate that FEARLESS significantly reduces the quality-of-service violations of the scheduled tasks by up to 57%, compared to a centralized “least-CPU-utilization” and a “local-execution” approach, while it also achieves approximately up to 20% average total energy reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信