{"title":"抛物线 MEMS 问题的爆炸分析,I:荷尔德估计","authors":"Kelei Wang, Guangzeng Yi","doi":"10.1007/s00526-024-02804-7","DOIUrl":null,"url":null,"abstract":"<p>This is the first in a series of papers devoted to the blow up analysis for the quenching phenomena in a parabolic MEMS equation. In this paper, we first give an optimal Hölder estimate for solutions to this equation by using the blow up method and some Liouville theorems on stationary two-valued caloric functions, and then establish a convergence theory for sequences of uniformly Hölder continuous solutions. These results are also used to prove a stratification theorem on the rupture set <span>\\(\\{u=0\\}\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow up analysis for a parabolic MEMS problem, I: Hölder estimate\",\"authors\":\"Kelei Wang, Guangzeng Yi\",\"doi\":\"10.1007/s00526-024-02804-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is the first in a series of papers devoted to the blow up analysis for the quenching phenomena in a parabolic MEMS equation. In this paper, we first give an optimal Hölder estimate for solutions to this equation by using the blow up method and some Liouville theorems on stationary two-valued caloric functions, and then establish a convergence theory for sequences of uniformly Hölder continuous solutions. These results are also used to prove a stratification theorem on the rupture set <span>\\\\(\\\\{u=0\\\\}\\\\)</span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02804-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02804-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Blow up analysis for a parabolic MEMS problem, I: Hölder estimate
This is the first in a series of papers devoted to the blow up analysis for the quenching phenomena in a parabolic MEMS equation. In this paper, we first give an optimal Hölder estimate for solutions to this equation by using the blow up method and some Liouville theorems on stationary two-valued caloric functions, and then establish a convergence theory for sequences of uniformly Hölder continuous solutions. These results are also used to prove a stratification theorem on the rupture set \(\{u=0\}\).