北大西洋中纬度海面温度变暖加强了中国东部地区冬季 PM2.5 的日变异性

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Shiyue Zhang, Gang Zeng, Xiaoye Yang and Zhongxian Li
{"title":"北大西洋中纬度海面温度变暖加强了中国东部地区冬季 PM2.5 的日变异性","authors":"Shiyue Zhang, Gang Zeng, Xiaoye Yang and Zhongxian Li","doi":"10.1088/1748-9326/ad6a28","DOIUrl":null,"url":null,"abstract":"Climate factors, in addition to human activities, are acknowledged to exert a notable influence on the synoptic PM2.5 variations over eastern China in extensive case studies. Based on observed daily PM2.5 concentrations data, this study reveals the enhanced daily variability (DV) of PM2.5 concentrations over eastern China and identifies its association with mid-latitude sea surface temperature anomalies over the North Atlantic. The dominant daily mode of PM2.5 concentrations identified through empirical orthogonal function analysis accounts for 43.75% of the total variance, with its DV experienced a significant enhancement from 1979 to 2019. The identified enhancement is attributed to the intensified wave train propagation along the mid-latitudes on a time scale of 10–30 d. The eastward propagation of the identified wave train can expose eastern China to recurrent influences of cyclonic and anticyclonic anomalies, resulting in an initial increase and subsequent decrease in PM2.5 concentrations. Statistical analysis and dynamic diagnostics show that the warming of the mid-latitude North Atlantic Ocean enhances the wave train at its source through the local energy exchange, and ultimately leads to an increased DV of PM2.5 concentrations.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"57 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Warming of mid-latitude North Atlantic Sea surface temperature strengthens the daily variability of winter PM2.5 in eastern China\",\"authors\":\"Shiyue Zhang, Gang Zeng, Xiaoye Yang and Zhongxian Li\",\"doi\":\"10.1088/1748-9326/ad6a28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate factors, in addition to human activities, are acknowledged to exert a notable influence on the synoptic PM2.5 variations over eastern China in extensive case studies. Based on observed daily PM2.5 concentrations data, this study reveals the enhanced daily variability (DV) of PM2.5 concentrations over eastern China and identifies its association with mid-latitude sea surface temperature anomalies over the North Atlantic. The dominant daily mode of PM2.5 concentrations identified through empirical orthogonal function analysis accounts for 43.75% of the total variance, with its DV experienced a significant enhancement from 1979 to 2019. The identified enhancement is attributed to the intensified wave train propagation along the mid-latitudes on a time scale of 10–30 d. The eastward propagation of the identified wave train can expose eastern China to recurrent influences of cyclonic and anticyclonic anomalies, resulting in an initial increase and subsequent decrease in PM2.5 concentrations. Statistical analysis and dynamic diagnostics show that the warming of the mid-latitude North Atlantic Ocean enhances the wave train at its source through the local energy exchange, and ultimately leads to an increased DV of PM2.5 concentrations.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad6a28\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad6a28","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在大量案例研究中,除人类活动外,气候因素也被认为对中国东部地区PM2.5的同步变化产生了显著影响。本研究基于观测到的PM2.5日浓度数据,揭示了中国东部地区PM2.5浓度的增强日变率(DV),并确定了其与北大西洋中纬度海面温度异常的关联。通过经验正交函数分析确定的PM2.5浓度主导日模式占总方差的43.75%,其DV在1979年至2019年期间显著增强。所确定的波列向东传播可使华东地区受到气旋和反气旋异常的反复影响,从而导致 PM2.5 浓度的先升后降。统计分析和动态诊断表明,北大西洋中纬度的变暖通过局地能量交换增强了波列的源头,并最终导致 PM2.5 浓度的 DV 值增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Warming of mid-latitude North Atlantic Sea surface temperature strengthens the daily variability of winter PM2.5 in eastern China
Climate factors, in addition to human activities, are acknowledged to exert a notable influence on the synoptic PM2.5 variations over eastern China in extensive case studies. Based on observed daily PM2.5 concentrations data, this study reveals the enhanced daily variability (DV) of PM2.5 concentrations over eastern China and identifies its association with mid-latitude sea surface temperature anomalies over the North Atlantic. The dominant daily mode of PM2.5 concentrations identified through empirical orthogonal function analysis accounts for 43.75% of the total variance, with its DV experienced a significant enhancement from 1979 to 2019. The identified enhancement is attributed to the intensified wave train propagation along the mid-latitudes on a time scale of 10–30 d. The eastward propagation of the identified wave train can expose eastern China to recurrent influences of cyclonic and anticyclonic anomalies, resulting in an initial increase and subsequent decrease in PM2.5 concentrations. Statistical analysis and dynamic diagnostics show that the warming of the mid-latitude North Atlantic Ocean enhances the wave train at its source through the local energy exchange, and ultimately leads to an increased DV of PM2.5 concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信