{"title":"基于混合驱动方法的海上地层测试采样时间智能预测","authors":"Yiying Nie, Caoxiong Li, Yanmin Zhou, Qiang Yu, Youxiang Zuo, Yuexin Meng, Chenggang Xian","doi":"10.3390/jmse12081348","DOIUrl":null,"url":null,"abstract":"Formation testing is widely used in offshore oil and gas development, and predicting the sampling time of pure fluids during this process is very important. However, existing formation testing methods have problems such as long duration and low efficiency. To address these issues, this paper proposes a hybrid-driven method based on physical models and machine learning models to predict fluid sampling time in formation testing. In this hybrid-driven model, we establish a digital twin model to simulate a large amount of experimental data (6000 cases, totaling over 1 million data points) and significantly enhance the correlation between features using physical formulas. By applying advanced machine learning algorithms, we achieve real-time predictions of fluid sampling time with an accuracy of up to 92%. Additionally, we use optimizers to improve the model’s accuracy by 3%, ultimately reaching 95%. This model provides a novel approach for optimizing formation testing that is significant for the efficient development of offshore oil and gas.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Prediction of Sampling Time for Offshore Formation Testing Based on Hybrid-Driven Methods\",\"authors\":\"Yiying Nie, Caoxiong Li, Yanmin Zhou, Qiang Yu, Youxiang Zuo, Yuexin Meng, Chenggang Xian\",\"doi\":\"10.3390/jmse12081348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation testing is widely used in offshore oil and gas development, and predicting the sampling time of pure fluids during this process is very important. However, existing formation testing methods have problems such as long duration and low efficiency. To address these issues, this paper proposes a hybrid-driven method based on physical models and machine learning models to predict fluid sampling time in formation testing. In this hybrid-driven model, we establish a digital twin model to simulate a large amount of experimental data (6000 cases, totaling over 1 million data points) and significantly enhance the correlation between features using physical formulas. By applying advanced machine learning algorithms, we achieve real-time predictions of fluid sampling time with an accuracy of up to 92%. Additionally, we use optimizers to improve the model’s accuracy by 3%, ultimately reaching 95%. This model provides a novel approach for optimizing formation testing that is significant for the efficient development of offshore oil and gas.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081348\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081348","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Intelligent Prediction of Sampling Time for Offshore Formation Testing Based on Hybrid-Driven Methods
Formation testing is widely used in offshore oil and gas development, and predicting the sampling time of pure fluids during this process is very important. However, existing formation testing methods have problems such as long duration and low efficiency. To address these issues, this paper proposes a hybrid-driven method based on physical models and machine learning models to predict fluid sampling time in formation testing. In this hybrid-driven model, we establish a digital twin model to simulate a large amount of experimental data (6000 cases, totaling over 1 million data points) and significantly enhance the correlation between features using physical formulas. By applying advanced machine learning algorithms, we achieve real-time predictions of fluid sampling time with an accuracy of up to 92%. Additionally, we use optimizers to improve the model’s accuracy by 3%, ultimately reaching 95%. This model provides a novel approach for optimizing formation testing that is significant for the efficient development of offshore oil and gas.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.