Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang, Hai Du
{"title":"用于船用柴油机多状态预测的多维全局时态预测模型","authors":"Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang, Hai Du","doi":"10.3390/jmse12081370","DOIUrl":null,"url":null,"abstract":"The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"132 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines\",\"authors\":\"Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang, Hai Du\",\"doi\":\"10.3390/jmse12081370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081370\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081370","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines
The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.