Shenghong Li, Peiliang Li, Shuangyan He, Zhiyan Kuai, Yanzhen Gu, Haoyang Liu, Tao Liu, Yuan Lin
{"title":"基于前景区域卷积网络 (FR-CNN) 的水下鱼类自动检测和统计方法","authors":"Shenghong Li, Peiliang Li, Shuangyan He, Zhiyan Kuai, Yanzhen Gu, Haoyang Liu, Tao Liu, Yuan Lin","doi":"10.3390/jmse12081343","DOIUrl":null,"url":null,"abstract":"Computer vision in marine ranching enables real-time monitoring of underwater resources. Detecting fish presents challenges due to varying water turbidity and lighting, affecting color consistency. We propose a Foreground Region Convolutional Neural Network (FR-CNN) that combines unsupervised and supervised methods. It introduces an adaptive multiscale regression Gaussian background model to distinguish fish from noise at different scales. Probability density functions integrate spatiotemporal information for object detection, addressing illumination and water quality shifts. FR-CNN achieves 95% mAP with IoU of 0.5, reducing errors from open-source datasets. It updates anchor boxes automatically on local datasets, enhancing object detection accuracy in long-term monitoring. The results analyze fish species behaviors in relation to environmental conditions, validating the method’s practicality.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automatic Detection and Statistical Method for Underwater Fish Based on Foreground Region Convolution Network (FR-CNN)\",\"authors\":\"Shenghong Li, Peiliang Li, Shuangyan He, Zhiyan Kuai, Yanzhen Gu, Haoyang Liu, Tao Liu, Yuan Lin\",\"doi\":\"10.3390/jmse12081343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision in marine ranching enables real-time monitoring of underwater resources. Detecting fish presents challenges due to varying water turbidity and lighting, affecting color consistency. We propose a Foreground Region Convolutional Neural Network (FR-CNN) that combines unsupervised and supervised methods. It introduces an adaptive multiscale regression Gaussian background model to distinguish fish from noise at different scales. Probability density functions integrate spatiotemporal information for object detection, addressing illumination and water quality shifts. FR-CNN achieves 95% mAP with IoU of 0.5, reducing errors from open-source datasets. It updates anchor boxes automatically on local datasets, enhancing object detection accuracy in long-term monitoring. The results analyze fish species behaviors in relation to environmental conditions, validating the method’s practicality.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081343\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081343","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
An Automatic Detection and Statistical Method for Underwater Fish Based on Foreground Region Convolution Network (FR-CNN)
Computer vision in marine ranching enables real-time monitoring of underwater resources. Detecting fish presents challenges due to varying water turbidity and lighting, affecting color consistency. We propose a Foreground Region Convolutional Neural Network (FR-CNN) that combines unsupervised and supervised methods. It introduces an adaptive multiscale regression Gaussian background model to distinguish fish from noise at different scales. Probability density functions integrate spatiotemporal information for object detection, addressing illumination and water quality shifts. FR-CNN achieves 95% mAP with IoU of 0.5, reducing errors from open-source datasets. It updates anchor boxes automatically on local datasets, enhancing object detection accuracy in long-term monitoring. The results analyze fish species behaviors in relation to environmental conditions, validating the method’s practicality.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.