实证衡量网络社交影响力

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rohit Ram, Marian-Andrei Rizoiu
{"title":"实证衡量网络社交影响力","authors":"Rohit Ram, Marian-Andrei Rizoiu","doi":"10.1140/epjds/s13688-024-00492-z","DOIUrl":null,"url":null,"abstract":"<p>Social influence pervades our everyday lives and lays the foundation for complex social phenomena, such as the spread of misinformation and the polarization of communities. A disconnect appears between psychology approaches, generally performed and tested in controlled lab experiments, and quantitative methods, which are usually data-driven and rely on network and event analysis. The former are slow, expensive to deploy, and typically do not generalize well to topical issues; the latter often oversimplify the complexities of social influence and ignore psychosocial literature. This work bridges this gap by introducing a human-in-the-loop active learning method that empirically quantifies social influence by crowdsourcing pairwise influence comparisons. We develop simulation and fitting tools, allowing us to estimate the required budget based on the design features and the worker’s decision accuracy. We perform a series of pilot studies to quantify the impact of design features on worker accuracy. We deploy our method to estimate the influence ranking of 500 X/Twitter users. We validate our measure by showing that the obtained empirical influence is tightly linked with agency and communion, the Big Two of social cognition, with agency being the most important dimension for influence formation.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirically measuring online social influence\",\"authors\":\"Rohit Ram, Marian-Andrei Rizoiu\",\"doi\":\"10.1140/epjds/s13688-024-00492-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Social influence pervades our everyday lives and lays the foundation for complex social phenomena, such as the spread of misinformation and the polarization of communities. A disconnect appears between psychology approaches, generally performed and tested in controlled lab experiments, and quantitative methods, which are usually data-driven and rely on network and event analysis. The former are slow, expensive to deploy, and typically do not generalize well to topical issues; the latter often oversimplify the complexities of social influence and ignore psychosocial literature. This work bridges this gap by introducing a human-in-the-loop active learning method that empirically quantifies social influence by crowdsourcing pairwise influence comparisons. We develop simulation and fitting tools, allowing us to estimate the required budget based on the design features and the worker’s decision accuracy. We perform a series of pilot studies to quantify the impact of design features on worker accuracy. We deploy our method to estimate the influence ranking of 500 X/Twitter users. We validate our measure by showing that the obtained empirical influence is tightly linked with agency and communion, the Big Two of social cognition, with agency being the most important dimension for influence formation.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-024-00492-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00492-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

社会影响充斥着我们的日常生活,并为错误信息的传播和社区两极分化等复杂的社会现象奠定了基础。心理学方法通常在受控实验室实验中执行和测试,而定量方法通常是数据驱动的,依赖于网络和事件分析,两者之间出现了脱节。前者速度慢,部署成本高,通常不能很好地概括热点问题;后者往往过于简化社会影响的复杂性,忽略社会心理学文献。这项研究通过引入一种人在回路中的主动学习方法弥补了这一不足,该方法通过众包配对影响力比较来量化社会影响力。我们开发了模拟和拟合工具,使我们能够根据设计特点和工作人员的决策准确性估算出所需预算。我们进行了一系列试点研究,以量化设计特征对工人准确性的影响。我们采用我们的方法估算了 500 名 X/Twitter 用户的影响力排名。我们验证了我们的测量方法,结果表明所获得的经验影响力与社会认知的两大要素--代入感和交际密切相关,其中代入感是影响力形成的最重要维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Empirically measuring online social influence

Empirically measuring online social influence

Social influence pervades our everyday lives and lays the foundation for complex social phenomena, such as the spread of misinformation and the polarization of communities. A disconnect appears between psychology approaches, generally performed and tested in controlled lab experiments, and quantitative methods, which are usually data-driven and rely on network and event analysis. The former are slow, expensive to deploy, and typically do not generalize well to topical issues; the latter often oversimplify the complexities of social influence and ignore psychosocial literature. This work bridges this gap by introducing a human-in-the-loop active learning method that empirically quantifies social influence by crowdsourcing pairwise influence comparisons. We develop simulation and fitting tools, allowing us to estimate the required budget based on the design features and the worker’s decision accuracy. We perform a series of pilot studies to quantify the impact of design features on worker accuracy. We deploy our method to estimate the influence ranking of 500 X/Twitter users. We validate our measure by showing that the obtained empirical influence is tightly linked with agency and communion, the Big Two of social cognition, with agency being the most important dimension for influence formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信