Ying-Gang Sun, Xin Du, Ji-Gang Wang, Qiang Liu, Jing-Lin Mu, Zhong-Fang Li, He-Qing Jiang, Li-Kai Wang
{"title":"用于柔性锌-空气电池和 pH 值通用整体水分离的掺杂 N 的碳纳米管中由铱装饰的 Co 纳米粒子的界面工程设计","authors":"Ying-Gang Sun, Xin Du, Ji-Gang Wang, Qiang Liu, Jing-Lin Mu, Zhong-Fang Li, He-Qing Jiang, Li-Kai Wang","doi":"10.1007/s12598-024-02886-4","DOIUrl":null,"url":null,"abstract":"<div><p>To alleviate the crisis of energy shortages, the scalable fabrication of highly efficient electrocatalysts is highly sought after for metal–air batteries and pH-universal overall water splitting. Hereby, an in situ construction to achieve Co@Ir nanoparticles in N-doped carbon nanotubes has been explored, which were directly fabricated by the pyrolysis and galvanic replacement. The interface engineering of Co@Ir core–shell structures could enhance interfacial and synergistic effects, achieving the tailorable electrocatalytic activities for oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. Co@Ir-NT demonstrates the outstanding stability for overall water splitting under pH-universal conditions. Co@Ir-NT-based r-ZABs display a high power density of 295.1 mW·cm<sup>−2</sup> and a ultralong cycle stability over 2000 continuous charge–discharge cycles, and Co@Ir-NT-based F-ZABs maintain the similar performance at different bending angles, suggesting its promising potential in the application of wearable electronics. The corresponding theoretical calculations also indicate that Co@Ir core–shell structure could improve the adsorption capacity and facilitate the breakage of O–O band. Hence, this work might be helpful for developing multifunctional catalysts for metal–air batteries and water splitting under pH-universal conditions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6447 - 6459"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface engineering of Co nanoparticles decorated by Ir confined in N-doped carbon nanotubes for flexible Zn–air batteries and pH-universal overall water splitting\",\"authors\":\"Ying-Gang Sun, Xin Du, Ji-Gang Wang, Qiang Liu, Jing-Lin Mu, Zhong-Fang Li, He-Qing Jiang, Li-Kai Wang\",\"doi\":\"10.1007/s12598-024-02886-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To alleviate the crisis of energy shortages, the scalable fabrication of highly efficient electrocatalysts is highly sought after for metal–air batteries and pH-universal overall water splitting. Hereby, an in situ construction to achieve Co@Ir nanoparticles in N-doped carbon nanotubes has been explored, which were directly fabricated by the pyrolysis and galvanic replacement. The interface engineering of Co@Ir core–shell structures could enhance interfacial and synergistic effects, achieving the tailorable electrocatalytic activities for oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. Co@Ir-NT demonstrates the outstanding stability for overall water splitting under pH-universal conditions. Co@Ir-NT-based r-ZABs display a high power density of 295.1 mW·cm<sup>−2</sup> and a ultralong cycle stability over 2000 continuous charge–discharge cycles, and Co@Ir-NT-based F-ZABs maintain the similar performance at different bending angles, suggesting its promising potential in the application of wearable electronics. The corresponding theoretical calculations also indicate that Co@Ir core–shell structure could improve the adsorption capacity and facilitate the breakage of O–O band. Hence, this work might be helpful for developing multifunctional catalysts for metal–air batteries and water splitting under pH-universal conditions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"43 12\",\"pages\":\"6447 - 6459\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02886-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02886-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interface engineering of Co nanoparticles decorated by Ir confined in N-doped carbon nanotubes for flexible Zn–air batteries and pH-universal overall water splitting
To alleviate the crisis of energy shortages, the scalable fabrication of highly efficient electrocatalysts is highly sought after for metal–air batteries and pH-universal overall water splitting. Hereby, an in situ construction to achieve Co@Ir nanoparticles in N-doped carbon nanotubes has been explored, which were directly fabricated by the pyrolysis and galvanic replacement. The interface engineering of Co@Ir core–shell structures could enhance interfacial and synergistic effects, achieving the tailorable electrocatalytic activities for oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. Co@Ir-NT demonstrates the outstanding stability for overall water splitting under pH-universal conditions. Co@Ir-NT-based r-ZABs display a high power density of 295.1 mW·cm−2 and a ultralong cycle stability over 2000 continuous charge–discharge cycles, and Co@Ir-NT-based F-ZABs maintain the similar performance at different bending angles, suggesting its promising potential in the application of wearable electronics. The corresponding theoretical calculations also indicate that Co@Ir core–shell structure could improve the adsorption capacity and facilitate the breakage of O–O band. Hence, this work might be helpful for developing multifunctional catalysts for metal–air batteries and water splitting under pH-universal conditions.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.