阿拉斯加奥克莫克火山最近一次形成火山口的喷发的数值模拟

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Alain Burgisser, Ally Peccia, Terry Plank, Yves Moussallam
{"title":"阿拉斯加奥克莫克火山最近一次形成火山口的喷发的数值模拟","authors":"Alain Burgisser, Ally Peccia, Terry Plank, Yves Moussallam","doi":"10.1007/s00445-024-01765-1","DOIUrl":null,"url":null,"abstract":"<p>The 2050 ± 50 <sup>14</sup>C yBP caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in both Greenland and Antarctic ice cores. The associated global climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of the climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of mass eruption rate, jet water content, vent size, particle size and density, topography, and emission duration. Results suggest that a steady mass eruption rate of 1.2–3.9 × 10<sup>11</sup> kg/s is consistent with field observations. Minimal stratospheric injections occur in pulses issued from the central plume initially rising above the caldera center and from successive phoenix ash-clouds caused by the encounter of the pyroclastic density currents with topography. Most of the volcanic gas is injected into the stratosphere by the buoyant liftoff of dilute parts of the currents at the end of the eruption. Overall, 58–64 wt% of the total amount of gas emitted reaches the stratosphere. A fluctuating emission rate or an efficient final liftoff due to seawater interaction is unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption injected 11–20 Tg S into the stratosphere, consistent with the subsequent climate response and Greenland ice sheet deposition. Our results also show that the combination of the source Richardson number and the mass eruption rate is able to characterize the buoyant–collapse transition at Okmok. We extended this result to 141 runs from 10 published numerical studies of eruptive jets and found that this regime diagram is able to capture the first-order layout of the buoyant–collapse transition in all studies except one. An existing multivariate criterion yields the best predictions of this regime transition.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska\",\"authors\":\"Alain Burgisser, Ally Peccia, Terry Plank, Yves Moussallam\",\"doi\":\"10.1007/s00445-024-01765-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The 2050 ± 50 <sup>14</sup>C yBP caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in both Greenland and Antarctic ice cores. The associated global climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of the climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of mass eruption rate, jet water content, vent size, particle size and density, topography, and emission duration. Results suggest that a steady mass eruption rate of 1.2–3.9 × 10<sup>11</sup> kg/s is consistent with field observations. Minimal stratospheric injections occur in pulses issued from the central plume initially rising above the caldera center and from successive phoenix ash-clouds caused by the encounter of the pyroclastic density currents with topography. Most of the volcanic gas is injected into the stratosphere by the buoyant liftoff of dilute parts of the currents at the end of the eruption. Overall, 58–64 wt% of the total amount of gas emitted reaches the stratosphere. A fluctuating emission rate or an efficient final liftoff due to seawater interaction is unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption injected 11–20 Tg S into the stratosphere, consistent with the subsequent climate response and Greenland ice sheet deposition. Our results also show that the combination of the source Richardson number and the mass eruption rate is able to characterize the buoyant–collapse transition at Okmok. We extended this result to 141 runs from 10 published numerical studies of eruptive jets and found that this regime diagram is able to capture the first-order layout of the buoyant–collapse transition in all studies except one. An existing multivariate criterion yields the best predictions of this regime transition.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-024-01765-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01765-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阿拉斯加奥克莫克火山 2050 ± 50 14C yBP 形成的火山口喷发对全球大气产生了影响,在遥远的北极冰芯中发现了沉积物,在格陵兰和南极冰芯中发现了硫酸盐信号。相关的全球气候变冷是由火山喷发的气候阶段注入平流层的硫磺数量所驱动的。这一阶段由火成碎屑密度流主导,而火成碎屑密度流具有复杂的喷发动态,因此无法直接估算平流层的硫负荷。我们利用两相流模型 MFIX-TFM 在轴对称条件下模拟了高潮阶段的动态,并对大规模喷发率、喷射水含量、喷口大小、颗粒大小和密度、地形以及喷发持续时间进行了多种组合。结果表明,1.2-3.9 × 1011 千克/秒的稳定质量喷发率与实地观测结果一致。最初从火山口中心上方升起的中央羽流和火成碎屑密度流遇到地形时产生的连续凤凰灰云发出的脉冲发生了极少量的平流层喷射。大部分火山气体在喷发结束时通过气流稀释部分的浮力升空注入平流层。总体而言,58-64 wt%的气体排放总量到达平流层。由于海水的相互作用,波动的排放率或有效的最终升空不太可能增加这一负荷。结合对脱气 S 的岩石学估算,我们的结果表明火山爆发向平流层注入了 11-20 Tg S,这与随后的气候响应和格陵兰冰盖沉积是一致的。我们的结果还表明,源理查森数和大规模喷发率的组合能够描述奥克莫克的浮力-塌缩转变。我们将这一结果扩展到 10 项已发表的喷发喷流数值研究的 141 次运行中,发现除一项研究外,这一制度图能够捕捉到所有研究中浮力-塌缩转变的一阶布局。现有的多变量标准对这一制度转换的预测效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska

Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska

The 2050 ± 50 14C yBP caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in both Greenland and Antarctic ice cores. The associated global climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of the climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of mass eruption rate, jet water content, vent size, particle size and density, topography, and emission duration. Results suggest that a steady mass eruption rate of 1.2–3.9 × 1011 kg/s is consistent with field observations. Minimal stratospheric injections occur in pulses issued from the central plume initially rising above the caldera center and from successive phoenix ash-clouds caused by the encounter of the pyroclastic density currents with topography. Most of the volcanic gas is injected into the stratosphere by the buoyant liftoff of dilute parts of the currents at the end of the eruption. Overall, 58–64 wt% of the total amount of gas emitted reaches the stratosphere. A fluctuating emission rate or an efficient final liftoff due to seawater interaction is unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption injected 11–20 Tg S into the stratosphere, consistent with the subsequent climate response and Greenland ice sheet deposition. Our results also show that the combination of the source Richardson number and the mass eruption rate is able to characterize the buoyant–collapse transition at Okmok. We extended this result to 141 runs from 10 published numerical studies of eruptive jets and found that this regime diagram is able to capture the first-order layout of the buoyant–collapse transition in all studies except one. An existing multivariate criterion yields the best predictions of this regime transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信