利用通用预训练模型的迁移学习实现双向大脑图像翻译

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fatima Haimour , Rizik Al-Sayyed , Waleed Mahafza , Omar S. Al-Kadi
{"title":"利用通用预训练模型的迁移学习实现双向大脑图像翻译","authors":"Fatima Haimour ,&nbsp;Rizik Al-Sayyed ,&nbsp;Waleed Mahafza ,&nbsp;Omar S. Al-Kadi","doi":"10.1016/j.cviu.2024.104100","DOIUrl":null,"url":null,"abstract":"<div><p>Brain imaging plays a crucial role in the diagnosis and treatment of various neurological disorders, providing valuable insights into the structure and function of the brain. Techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) enable non-invasive visualization of the brain, aiding in the understanding of brain anatomy, abnormalities, and functional connectivity. However, cost and radiation dose may limit the acquisition of specific image modalities, so medical image synthesis can be used to generate required medical images without actual addition. CycleGAN and other GANs are valuable tools for generating synthetic images across various fields. In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge. Recent studies propose using transfer learning to overcome this issue. This involves adapting pre-trained CycleGAN models, initially trained on non-medical data, to generate realistic medical images. In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models, and the models were fine-tuned to have the best result. The models’ performance was evaluated using four widely used image quality metrics: Peak-signal-to-noise-ratio, Structural Similarity Index, Universal Quality Index, and Visual Information Fidelity. Quantitative evaluation and qualitative perceptual analysis by radiologists demonstrate the potential of transfer learning in medical imaging and the effectiveness of the generic pre-trained model. The results provide compelling evidence of the model’s exceptional performance, which can be attributed to the high quality and similarity of the training images to actual human brain images. These results underscore the significance of carefully selecting appropriate and representative training images to optimize performance in brain image analysis tasks.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional brain image translation using transfer learning from generic pre-trained models\",\"authors\":\"Fatima Haimour ,&nbsp;Rizik Al-Sayyed ,&nbsp;Waleed Mahafza ,&nbsp;Omar S. Al-Kadi\",\"doi\":\"10.1016/j.cviu.2024.104100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brain imaging plays a crucial role in the diagnosis and treatment of various neurological disorders, providing valuable insights into the structure and function of the brain. Techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) enable non-invasive visualization of the brain, aiding in the understanding of brain anatomy, abnormalities, and functional connectivity. However, cost and radiation dose may limit the acquisition of specific image modalities, so medical image synthesis can be used to generate required medical images without actual addition. CycleGAN and other GANs are valuable tools for generating synthetic images across various fields. In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge. Recent studies propose using transfer learning to overcome this issue. This involves adapting pre-trained CycleGAN models, initially trained on non-medical data, to generate realistic medical images. In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models, and the models were fine-tuned to have the best result. The models’ performance was evaluated using four widely used image quality metrics: Peak-signal-to-noise-ratio, Structural Similarity Index, Universal Quality Index, and Visual Information Fidelity. Quantitative evaluation and qualitative perceptual analysis by radiologists demonstrate the potential of transfer learning in medical imaging and the effectiveness of the generic pre-trained model. The results provide compelling evidence of the model’s exceptional performance, which can be attributed to the high quality and similarity of the training images to actual human brain images. These results underscore the significance of carefully selecting appropriate and representative training images to optimize performance in brain image analysis tasks.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224001814\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001814","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑成像技术在诊断和治疗各种神经系统疾病方面发挥着至关重要的作用,为人们深入了解大脑的结构和功能提供了宝贵的资料。磁共振成像(MRI)和计算机断层扫描(CT)等技术可对大脑进行非侵入式可视化,有助于了解大脑解剖、异常和功能连接。然而,成本和辐射剂量可能会限制特定图像模式的获取,因此医学图像合成可用于生成所需的医学图像,而无需实际添加。CycleGAN 和其他 GAN 是生成各领域合成图像的重要工具。在医疗领域,获取有标记的医学图像需要耗费大量人力和财力,因此解决数据稀缺问题是一项重大挑战。最近的研究提出利用迁移学习来解决这一问题。这涉及将最初在非医疗数据上训练的预训练 CycleGAN 模型调整为生成真实的医疗图像。在这项工作中,利用 18 个预先训练好的非医学模型,将迁移学习应用于 MR-CT 图像翻译任务,反之亦然,并对模型进行微调,以获得最佳效果。这些模型的性能使用四种广泛使用的图像质量指标进行评估:峰值信噪比、结构相似性指数、通用质量指数和视觉信息保真度。放射科医生的定量评估和定性感知分析证明了迁移学习在医学成像中的潜力以及通用预训练模型的有效性。结果令人信服地证明了该模型的卓越性能,这归功于训练图像的高质量和与实际人脑图像的相似性。这些结果凸显了精心选择适当且具有代表性的训练图像对优化脑图像分析任务性能的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional brain image translation using transfer learning from generic pre-trained models

Brain imaging plays a crucial role in the diagnosis and treatment of various neurological disorders, providing valuable insights into the structure and function of the brain. Techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) enable non-invasive visualization of the brain, aiding in the understanding of brain anatomy, abnormalities, and functional connectivity. However, cost and radiation dose may limit the acquisition of specific image modalities, so medical image synthesis can be used to generate required medical images without actual addition. CycleGAN and other GANs are valuable tools for generating synthetic images across various fields. In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge. Recent studies propose using transfer learning to overcome this issue. This involves adapting pre-trained CycleGAN models, initially trained on non-medical data, to generate realistic medical images. In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models, and the models were fine-tuned to have the best result. The models’ performance was evaluated using four widely used image quality metrics: Peak-signal-to-noise-ratio, Structural Similarity Index, Universal Quality Index, and Visual Information Fidelity. Quantitative evaluation and qualitative perceptual analysis by radiologists demonstrate the potential of transfer learning in medical imaging and the effectiveness of the generic pre-trained model. The results provide compelling evidence of the model’s exceptional performance, which can be attributed to the high quality and similarity of the training images to actual human brain images. These results underscore the significance of carefully selecting appropriate and representative training images to optimize performance in brain image analysis tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信