{"title":"使用金/石墨烯/Ti3C2Tx-MXene 混合层的高灵敏 PCF-SPR RI 癌症检测传感器","authors":"Yimin Mao, Fang Ren, Deyang Zhou, Yidan Li","doi":"10.1007/s11468-024-02467-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a gold/graphene/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene hybrid layered D-type photonic crystal fiber (PCF) design based on surface plasmon resonance (SPR) sensors is proposed for cancer cell detection. This design uniquely combines gold, graphene, and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene materials to achieve a synergistic effect, significantly enhancing the sensitivity and specificity of the sensor. The full vector finite element method (FVFEM) is used for the entire numerical analysis of the proposed biosensor. The cladding of the D-type PCF has a hexagonal arrangement of air holes. In the first cladding, the two air holes closest to the metal layer are narrowed down to enhance the plasma wave and provide an efficient leakage channel. The last two air holes closest to the metal layer in the same layer are enlarged to limit light scattering and couple more energy to the surface plasmon polariton (SPP) mode. The sensitivity of the sensor improves by using these different diameter air holes and coating the D-type PCF surface with a hybrid gold/graphene/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene layer. The geometrical parameters are optimized to obtain higher sensor sensitivity. The corresponding wavelength sensitivities are 3000 nm/RIU for Basal cells, 5000 nm/RIU for HeLa cells (Henrietta Lacks cells), 5714 nm/RIU for Jurkat cells (Human T lymphocyte cells), 7143 nm/RIU for PC12 cells (Pheochromocytoma cells), 8571 nm/RIU for MDA-MB-231 cells (Breast cancer cells), and 9286 nm/RIU for MCF-7 cells (Michigan Cancer Foundation-7, a breast cancer cell line), respectively, confirming the excellent performance of the proposed sensor. The sensor proposed paves the way for efficient, simple, low-cost, and highly sensitive cancer detection techniques that could replace surgical and chemical techniques.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"197 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive PCF-SPR RI Sensor for Cancer Detection Using Gold/Graphene/Ti3C2Tx-MXene Hybrid Layer\",\"authors\":\"Yimin Mao, Fang Ren, Deyang Zhou, Yidan Li\",\"doi\":\"10.1007/s11468-024-02467-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a gold/graphene/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene hybrid layered D-type photonic crystal fiber (PCF) design based on surface plasmon resonance (SPR) sensors is proposed for cancer cell detection. This design uniquely combines gold, graphene, and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene materials to achieve a synergistic effect, significantly enhancing the sensitivity and specificity of the sensor. The full vector finite element method (FVFEM) is used for the entire numerical analysis of the proposed biosensor. The cladding of the D-type PCF has a hexagonal arrangement of air holes. In the first cladding, the two air holes closest to the metal layer are narrowed down to enhance the plasma wave and provide an efficient leakage channel. The last two air holes closest to the metal layer in the same layer are enlarged to limit light scattering and couple more energy to the surface plasmon polariton (SPP) mode. The sensitivity of the sensor improves by using these different diameter air holes and coating the D-type PCF surface with a hybrid gold/graphene/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene layer. The geometrical parameters are optimized to obtain higher sensor sensitivity. The corresponding wavelength sensitivities are 3000 nm/RIU for Basal cells, 5000 nm/RIU for HeLa cells (Henrietta Lacks cells), 5714 nm/RIU for Jurkat cells (Human T lymphocyte cells), 7143 nm/RIU for PC12 cells (Pheochromocytoma cells), 8571 nm/RIU for MDA-MB-231 cells (Breast cancer cells), and 9286 nm/RIU for MCF-7 cells (Michigan Cancer Foundation-7, a breast cancer cell line), respectively, confirming the excellent performance of the proposed sensor. The sensor proposed paves the way for efficient, simple, low-cost, and highly sensitive cancer detection techniques that could replace surgical and chemical techniques.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02467-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02467-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly Sensitive PCF-SPR RI Sensor for Cancer Detection Using Gold/Graphene/Ti3C2Tx-MXene Hybrid Layer
In this paper, a gold/graphene/Ti3C2Tx-MXene hybrid layered D-type photonic crystal fiber (PCF) design based on surface plasmon resonance (SPR) sensors is proposed for cancer cell detection. This design uniquely combines gold, graphene, and Ti3C2Tx-MXene materials to achieve a synergistic effect, significantly enhancing the sensitivity and specificity of the sensor. The full vector finite element method (FVFEM) is used for the entire numerical analysis of the proposed biosensor. The cladding of the D-type PCF has a hexagonal arrangement of air holes. In the first cladding, the two air holes closest to the metal layer are narrowed down to enhance the plasma wave and provide an efficient leakage channel. The last two air holes closest to the metal layer in the same layer are enlarged to limit light scattering and couple more energy to the surface plasmon polariton (SPP) mode. The sensitivity of the sensor improves by using these different diameter air holes and coating the D-type PCF surface with a hybrid gold/graphene/Ti3C2Tx-MXene layer. The geometrical parameters are optimized to obtain higher sensor sensitivity. The corresponding wavelength sensitivities are 3000 nm/RIU for Basal cells, 5000 nm/RIU for HeLa cells (Henrietta Lacks cells), 5714 nm/RIU for Jurkat cells (Human T lymphocyte cells), 7143 nm/RIU for PC12 cells (Pheochromocytoma cells), 8571 nm/RIU for MDA-MB-231 cells (Breast cancer cells), and 9286 nm/RIU for MCF-7 cells (Michigan Cancer Foundation-7, a breast cancer cell line), respectively, confirming the excellent performance of the proposed sensor. The sensor proposed paves the way for efficient, simple, low-cost, and highly sensitive cancer detection techniques that could replace surgical and chemical techniques.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.