在低温应用中使用 FBGS 进行热膨胀计算

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
{"title":"在低温应用中使用 FBGS 进行热膨胀计算","authors":"","doi":"10.1016/j.cryogenics.2024.103918","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the measurement of the thermal expansion of aluminum alloy 6061 at cryogenic temperatures using Helium as the cooling medium. Three distinct tests were conducted to evaluate thermal expansion: two with gradual and natural heating of the material, and a third with temperature stabilization at key points. Measurements were carried out using Fiber Bragg Grating Sensors (FBGS), which provided precise and reliable data on the material's thermal behavior. The obtained results were compared with reference curves from the National Institute of Standards and Technology (NIST), showing good agreement and validation of the employed methods. This research highlights the effectiveness of using FBGS in measuring thermal expansion under cryogenic conditions and the importance of heating procedures in obtaining accurate data.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0011227524001383/pdfft?md5=2ad4821479c5659188c2e86250f6c394&pid=1-s2.0-S0011227524001383-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal expansion calculation using FBGS in cryogenic applications\",\"authors\":\"\",\"doi\":\"10.1016/j.cryogenics.2024.103918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the measurement of the thermal expansion of aluminum alloy 6061 at cryogenic temperatures using Helium as the cooling medium. Three distinct tests were conducted to evaluate thermal expansion: two with gradual and natural heating of the material, and a third with temperature stabilization at key points. Measurements were carried out using Fiber Bragg Grating Sensors (FBGS), which provided precise and reliable data on the material's thermal behavior. The obtained results were compared with reference curves from the National Institute of Standards and Technology (NIST), showing good agreement and validation of the employed methods. This research highlights the effectiveness of using FBGS in measuring thermal expansion under cryogenic conditions and the importance of heating procedures in obtaining accurate data.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001383/pdfft?md5=2ad4821479c5659188c2e86250f6c394&pid=1-s2.0-S0011227524001383-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001383\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了使用氦气作为冷却介质测量铝合金 6061 在低温下的热膨胀。对热膨胀进行了三次不同的测试:两次是材料逐渐自然加热,第三次是关键点温度稳定。使用光纤布拉格光栅传感器(FBGS)进行了测量,为材料的热行为提供了精确可靠的数据。获得的结果与美国国家标准与技术研究院(NIST)的参考曲线进行了比较,结果表明所采用的方法具有良好的一致性和有效性。这项研究强调了在低温条件下使用 FBGS 测量热膨胀的有效性,以及加热程序对获得精确数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal expansion calculation using FBGS in cryogenic applications

This study presents the measurement of the thermal expansion of aluminum alloy 6061 at cryogenic temperatures using Helium as the cooling medium. Three distinct tests were conducted to evaluate thermal expansion: two with gradual and natural heating of the material, and a third with temperature stabilization at key points. Measurements were carried out using Fiber Bragg Grating Sensors (FBGS), which provided precise and reliable data on the material's thermal behavior. The obtained results were compared with reference curves from the National Institute of Standards and Technology (NIST), showing good agreement and validation of the employed methods. This research highlights the effectiveness of using FBGS in measuring thermal expansion under cryogenic conditions and the importance of heating procedures in obtaining accurate data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信