{"title":"低级煤颗粒与粘土矿物之间的相互作用及其在浮选反应中的作用的新见解","authors":"Shiwei Wang , Yuheng Wang , Rongjie Kong","doi":"10.1016/j.partic.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the adverse effects of fine clay minerals on low-rank coal (LRC) flotation. Zeta potential analysis, X-ray photoelectron spectroscopy, flotation experiments, and the particle-bubble attachment index (PBAI) were employed to assess these effects. Results indicate that quartz and chlorite particles are more prevalent in the flotation concentrate than kaolinite and montmorillonite, likely due to their preferential adsorption of flotation collectors, which inhibits the hydrophobicity of the LRC surface. Montmorillonite, however, exhibits greater adhesion to LRC surfaces due to its positive charge. Extended DLVO theoretical analysis reveals that polar surface interaction energy is a primary driving force in coal-mineral interactions and is crucial in overcoming the energy barrier posed by electrostatic double-layer forces. The impact of clay minerals on LRC flotation is highly dependent on clay type.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 48-58"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights into the interaction between low-rank coal particles and clay minerals and its role in flotation responses\",\"authors\":\"Shiwei Wang , Yuheng Wang , Rongjie Kong\",\"doi\":\"10.1016/j.partic.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the adverse effects of fine clay minerals on low-rank coal (LRC) flotation. Zeta potential analysis, X-ray photoelectron spectroscopy, flotation experiments, and the particle-bubble attachment index (PBAI) were employed to assess these effects. Results indicate that quartz and chlorite particles are more prevalent in the flotation concentrate than kaolinite and montmorillonite, likely due to their preferential adsorption of flotation collectors, which inhibits the hydrophobicity of the LRC surface. Montmorillonite, however, exhibits greater adhesion to LRC surfaces due to its positive charge. Extended DLVO theoretical analysis reveals that polar surface interaction energy is a primary driving force in coal-mineral interactions and is crucial in overcoming the energy barrier posed by electrostatic double-layer forces. The impact of clay minerals on LRC flotation is highly dependent on clay type.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"94 \",\"pages\":\"Pages 48-58\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001457\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001457","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
New insights into the interaction between low-rank coal particles and clay minerals and its role in flotation responses
This study investigates the adverse effects of fine clay minerals on low-rank coal (LRC) flotation. Zeta potential analysis, X-ray photoelectron spectroscopy, flotation experiments, and the particle-bubble attachment index (PBAI) were employed to assess these effects. Results indicate that quartz and chlorite particles are more prevalent in the flotation concentrate than kaolinite and montmorillonite, likely due to their preferential adsorption of flotation collectors, which inhibits the hydrophobicity of the LRC surface. Montmorillonite, however, exhibits greater adhesion to LRC surfaces due to its positive charge. Extended DLVO theoretical analysis reveals that polar surface interaction energy is a primary driving force in coal-mineral interactions and is crucial in overcoming the energy barrier posed by electrostatic double-layer forces. The impact of clay minerals on LRC flotation is highly dependent on clay type.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.