Parsa Kabir , Mohammad Zareinejad , Heidar Ali Talebi , Manijeh Soleimanifar
{"title":"可充气的软性可穿戴膝关节康复装置:设计、制造、控制和初步评估","authors":"Parsa Kabir , Mohammad Zareinejad , Heidar Ali Talebi , Manijeh Soleimanifar","doi":"10.1016/j.mechatronics.2024.103233","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple diseases and injuries can cause knee joint stiffness. Typically, therapists manually move a patient’s lower limb to assist them in regaining range of motion. There are also devices that can be used to aid in the rehabilitation process; however, the majority of them require lengthy rehabilitation sessions or have a fixed axis of rotation that cannot always be aligned with the knee’s moving center of rotation. This work presents the design, fabrication, and evaluation of a soft, inflatable, wearable device without rigid mechanisms that aims to replicate the behavior of the therapist and address the mentioned deficiencies. Two control strategies, passive and assist-as-needed, are defined for the device’s operation. The objective of the passive strategy is to relocate the patient’s knee to the designated position within the specified time. The assist-as-needed strategy, on the other hand, does not interfere if the patient is able to move ahead of the trajectory that the device is following, and only begins to assist when the patient’s limb stops moving. The device underwent experimental testing, and the outcomes were assessed.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"102 ","pages":"Article 103233"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inflatable soft wearable knee rehabilitation device: Design, fabrication, control and preliminary evaluation\",\"authors\":\"Parsa Kabir , Mohammad Zareinejad , Heidar Ali Talebi , Manijeh Soleimanifar\",\"doi\":\"10.1016/j.mechatronics.2024.103233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiple diseases and injuries can cause knee joint stiffness. Typically, therapists manually move a patient’s lower limb to assist them in regaining range of motion. There are also devices that can be used to aid in the rehabilitation process; however, the majority of them require lengthy rehabilitation sessions or have a fixed axis of rotation that cannot always be aligned with the knee’s moving center of rotation. This work presents the design, fabrication, and evaluation of a soft, inflatable, wearable device without rigid mechanisms that aims to replicate the behavior of the therapist and address the mentioned deficiencies. Two control strategies, passive and assist-as-needed, are defined for the device’s operation. The objective of the passive strategy is to relocate the patient’s knee to the designated position within the specified time. The assist-as-needed strategy, on the other hand, does not interfere if the patient is able to move ahead of the trajectory that the device is following, and only begins to assist when the patient’s limb stops moving. The device underwent experimental testing, and the outcomes were assessed.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"102 \",\"pages\":\"Article 103233\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000989\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000989","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An inflatable soft wearable knee rehabilitation device: Design, fabrication, control and preliminary evaluation
Multiple diseases and injuries can cause knee joint stiffness. Typically, therapists manually move a patient’s lower limb to assist them in regaining range of motion. There are also devices that can be used to aid in the rehabilitation process; however, the majority of them require lengthy rehabilitation sessions or have a fixed axis of rotation that cannot always be aligned with the knee’s moving center of rotation. This work presents the design, fabrication, and evaluation of a soft, inflatable, wearable device without rigid mechanisms that aims to replicate the behavior of the therapist and address the mentioned deficiencies. Two control strategies, passive and assist-as-needed, are defined for the device’s operation. The objective of the passive strategy is to relocate the patient’s knee to the designated position within the specified time. The assist-as-needed strategy, on the other hand, does not interfere if the patient is able to move ahead of the trajectory that the device is following, and only begins to assist when the patient’s limb stops moving. The device underwent experimental testing, and the outcomes were assessed.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.